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Comparison of firefly and cockroach algorithms in selected discrete

and combinatorial problems
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Abstract. In recent years, newer algorithms inspired by nature have been created and used to solve various problems. Therefore, in the
paper we present the application of firefly and cockroach algorithms to optimize two queueing systems and permutation flow shop problems
with the objective of minimizing the makespan. The article briefly describes these algorithms to solve selected problems and their results.
Because these algorithms were originally developed for continuous optimization problems, we introduce a new formula to transform the
position of ith individual to solve the discrete problems.
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1. Introduction

Recently, many NP-hard optimization problems have been
successfully analysed by the nature-inspired metaheuristics
based on existing mechanisms of a biological phenomenon
of nature. Animals adapt to current conditions of living as
best they can. Some species specialize in hunting, others have
developed the ability of quick escape or camouflage. Many
population-based algorithms are extensively studied in the lit-
erature. Particle swarm optimization algorithm [1], ant colony
optimization algorithm [2, 3], bee algorithm [4] and artificial
bee colony algorithm [5, 6] have been widely used in solv-
ing many problems. Firefly and cockroach algorithms are the
latest metaheuristics. These algorithms have not been tested
in many optimization problems yet, so we present their use-
fulness to solve the selected problems. The firefly algorithm
(FA) was proposed by Xin-She Yang at Cambridge University
in 2008 [7]. It is inspired by the behavior of fireflies. Their
flashing light generated by a process of bioluminescence may
serve as an element of courtship rituals or warning signals.
The cockroach swarm optimization algorithm (CSO) was pre-
sented by Chen and Tang in [8].

Manufacturing companies from different sectors of the
economy are looking for solutions that allow for optimization
of processes in many areas of their activities. Many produc-
tion systems are the flow types. They are characterized by
the fact that the final product is produced by passing through
successive stages of processing, where the explicit realiza-
tion of operations (machining, assembling) takes place. In
computer systems, the specific calculations are performed by
dedicated processors. Technological progress generates more
efficient and more complex production systems and IT sys-
tems, which consist of more and more machines, processors.
This causes an increase in the number of performed tasks,
often more complex and thus requires more and better ways
to optimize processes. In scheduling problems, even with a

relatively small number of jobs and machines, it is not pos-
sible to find optimal solutions in accessible time. The best
known way seems to be the use of approximate algorithms,
which are a compromise between the quality of the resulting
solution and computation time.

The problems of queueing systems emerge in many is-
sues related to the subject of operations research. Queueing
theory has aroused intense interest of many mathematicians,
economists and engineers. Its principal objective is to devel-
op methods to determine the values of basic indicators that
characterize the service process and the selection of the op-
timal structure and organization of the service. Hence, it is
necessary to use various methods, including these inspired by
nature, to determine the optimal structure.

The rest of the paper is organized as follows: Sec. 2
presents the idea of the firefly and cockroach algorithms, while
Sec. 3 describes the examples of discrete and combinatorial
problems, such as the permutation flow shop and optimization
of queueing systems. The results of the metaheuristics used
to solve these problems, including their analysis and compar-
ison, are described in Sec. 4. Finally, Sec. 5 summarizes the
conclusions.

2. Nature-inspired metaheuristics

In solving NP-hard problems, we are on the line by two fac-
tors: the optimal solution and the time at which a solution
is reached. The achievement of a result (which is fairly good
approximation of an ideal) in real time is often more desir-
able than looking for the best result in a very long time. The
nature-inspired metaheuristics meet the goal.

2.1. Firefly algorithm. The firefly algorithm uses the be-
havior of fireflies, which tend to the light source (optimal
solution) and interact with light emitted by them (each firefly
moves towards a brighter partner), in proportion to the mutu-
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al distance. The brightness of each firefly perceived by others
depends on the distance from the light source. Fireflies also
turn to the brighter partner, which ensures that the informa-
tion about the brightness of the light source is propagated not
only by the same source, but also by insects.

In optimization problems, values of the objective func-
tion correspond to the searched problem space, while achiev-
ing the extreme values of the objective function is associated
with achievement of the light sources by fireflies. The ob-
jective function of a given optimization problem is based on
differences in light intensity. Each firefly changes its position
iteratively.

Xin-She Yang outlined three principles that determine the
behavior of fireflies in the algorithm [7, 9]:

• All fireflies are of the same sex, each firefly can be attracted
by the other regardless of their gender.

• The attractiveness of firefly is proportional to its bright-
ness. The lighter firefly, the more attractive to the others
and from any two fireflies, less luminous firefly tend to-
wards the brighter one. If the brighter one is not around,
firefly moves at random.

• Brightness of a firefly is determined by the objective func-
tion. For maximization problems, the brightness can be
assumed directly proportional to the value of the objective
function.

The attractiveness of firefly β is a factor that determines
the power of attraction of fireflies. It depends on the mutual
distance between the fireflies. Attractiveness is given by [7]:

β(r) = β0e
−γrm

, m ≥ 1, (1)

where β0 denotes the maximum attractiveness (at r = 0) and
γ is the light absorption coefficient, which controls the de-
crease of the light intensity.

The distance between the fireflies, has the significant influ-
ence on the direction of their movement. The distance between
two fireflies i and j at positions xi and xj can be represented
as [7]:

rij = ‖xi − xj‖ =

√

√

√

√

D
∑

k=1

(xi,k − xj,k)2, (2)

where xi,k is the k-th component of the spatial coordinate xi

of i-th firefly and D denotes the number of dimensions.
The movement of firefly is affected by several factors: lo-

cation of the firefly (it decides on the relationship between the
fireflies), attractiveness and randomness. The movement of a
firefly i is determined by the following form [7]:

xi = xi + β0e
−γr2

ij(xj − xi) + α

(

rand −
1

2

)

, (3)

where the first factor is the current position of a firefly i,
the second one denotes a firefly’s attractiveness and the last
factor is used for the random movement if there is not any
brighter firefly (rand is a random number generator uniformly
distributed in the range < 0, 1 >). Depending on the choice
of the parameter we can control the influence of randomness

on the total displacement. For most cases α ∈ (0, 1), β0 = 1,
γ =< 0.1, 10 >. Parameter γ is responsible for the rate of
FA convergence [7, 9].

The firefly algorithm is executed as follows [7]:
STEP 1: Initialize algorithm’s parameters and generate pop-
ulation of fireflies (n – number of fireflies, i = 1, ..., n, β0,
γ, α, MaxIt – maximum number of iterations); define the
objective function f(x), x = (x1, . . ., xD)T .
STEP2: Calculate light intensities; light intensity of firefly Ii

at xi is determined by the value of objective function f(xi).
STEP 3: For each iteration (1, ...,MaxIt) do:

For i = 1 : n

For j = 1:n
If (Ij > Ii) move firefly i towards firefly j in
D-dimension according to Eq. (3); End if
Obtain attractiveness, which varies with
distance r according to Eq. (1)
Find new solutions and update light intensity

End for j

End for i

Rank the fireflies, firefly with the maximum light intensity is
chosen as the potential optimal solution
STEP 4: If a predefined stopping criterion is met then output
the results, otherwise go back to STEP 3. Find the firefly with
the highest light intensity, visualization.

2.2. Cockroach swarm algorithm. Cockroach swarm opti-
mization (CSO) is based on the observation of the behavior of
cockroaches looking for food. The way in which these insects
acquire food, focus the attention of researchers. The whole
phenomenon of ”hunting” is an accidental finding food, as-
sisted by the movement of designated routes through experi-
ence. The CSO algorithm uses a number of different cock-
roach’s behaviors, such as going in swarms, scattering or es-
cape from the light, which is particularly significant because
of the prevention of situations that the algorithm stucks in a
local optimum. Cockroaches scatter when the random vector
of light appears, which guarantees their continuous movement
[8, 10, 11].

In CSO algorithm, each cockroach Xi individually goes
to a local optimum Pi in the area of its visibility. The best
cockroach in the range of visibility is the one which tends to
the nearest local extreme. The best local optimum is a global
optimum at the end of the cycle, denoted as Pg [8, 10].

Analyzing “going in swarm”, in the new cycle all the
strongest cockroaches form small swarms and follow the glob-
al optimum. Other cockroaches will go well for the strongest,
for which the strongest cockroaches become local optimum
Pi. At any time there is a possibility that the cockroach fol-
lower in a small swarm, will be strongest if it finds a better
solution. This is because the cockroaches do not follow in the
same way as their local optima. A lonely cockroach (within
its scope of visibility) is a local optimum for itself. Disper-
sion of cockroaches means that at a time, each individual will
be randomly dispersed in order to maintain the current indi-
vidual diversity. Dispersion is a simulation of the appearance
of light. From time to time, we also have to deal with the
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ruthless behavior, when the current best individual replaces
a randomly chosen individual. In fact, in case of shortage of
food, the stronger eats the weaker (if it is much “stronger”)
[8, 10].

The cockroach swarm optimization algorithm can be pre-
sented as follows [8, 10]:
STEP 1: Initialize algorithm’s parameters and randomly gen-
erate population (step, the visual distance of cockroach visual,
D – space dimension, n – number of cockroach individuals,
MaxIt – maximum number of iterations, w – the inertia factor
from range < 0, 1 >), the i-th individual represents a vector
Xi = (xi1, xi2, . . ., xiD), i = 1, 2, . . ., n.
STEP 2: Search Pi (the optimal individual within the visual
scope of Xi) and Pg (the global optimal individual).
STEP 3: Implement behavior of “going in swarm” as follows:

• If a cockroach Xi is locally most powerful (local optimum),
then the cockroach goes to the global optimum Pg , which
is the most powerful cockroach:

Xi = w∗Xi+step∗rand < 0, 1 >∗ (Pg−Xi) for Xi = Pi.

• Otherwise, the cockroach goes to a local optimum of Pi,
which is the locally most powerful cockroach:

Xi = w∗Xi+step∗rand < 0, 1 >∗ (Pi−Xi) for Xi 6= Pi.

Update Pg .
STEP 4: Implement dispersing behavior by the equation:

Xi = w∗Xi + rand(1, D), update Pg.

STEP 5: Implement ruthless behavior by Xk = Pg , or
Xk = 0; k is a random integer within < 1, n >.
STEP 6: If a predefined stopping criterion is met then output
the results, otherwise go back to STEP 2.

3. Examples of optimization problems

In the paper, we consider only two problems: structural opti-
mization of two queueing systems and permutation flow shop
problem as examples of discrete and combinatorial optimiza-
tion.

3.1. Permutation flow shop problem. Flow shop problem is
one of the models of jobs scheduling on dedicated machines,
in which jobs are performed by all machines in the same or-
der. Single job consists of operations that are executed on
separate machines, according to the imposed order [12, 13].

The permutation flow shop problem can be formulated as
follows: there is a set of jobs J = {1, 2, . . ., n} and a set
of machines M = {1, 2, . . ., m}. The job j from the set J

consists of a sequence of operations Oj,1, Oj,2, ..., Oj,m, the
operation Oj,k corresponds the executed job j on machine k

(k = 1, 2, . . ., m) at a specified time tj,k. Jobs from the set J

are performed on machines from the set M with the following
assumptions [12, 13]:

• at any given time, each machine can perform one job at
most,

• each job can be performed in a time of at most one ma-
chine,

• operation started can not be interrupted,
• performing jobs on the machine k may be started only after

completion of processing on the machine k−1,
• additionally, the order of execution of jobs by each of the

machines is the same.

Each sequence of jobs can be described by permutation
π = (π(1), π(2), . . ., π(n)), in which π(i) represents the job
inserted at the i-th place. Denoting by C(π(i), j) the comple-
tion times and the maskespan (the length of the scheduling)
by Cmax(π), we can obtain these parameters from Eq. (4).
Finally, the objective is to find a permutation from the set
of all permutation for which the makespan (the length of the
scheduling) is minimal.

C (π(1), 1) = tπ(1),1

C (π(i), 1) = C (π(i − 1), 1) + tπ(i),1, i = 2, ..., n

C (π(1), j) = C (π(1), j − 1) + tπ(1),j , j = 2, ..., m

C (π(i), j)=max {C (π(i − 1), j) , C (π(i), j − 1)}+tπ(i),j

i = 2, ..., n, j = 2, ..., m

Cmax(π) = C (π(n), m) .
(4)

3.2. Queueing systems. In considered models we have a
Poisson arrival process with arrival rate λ. The service times
are exponentially distributed with parameter µ, and traffic in-
tensity ρ is the ratio of arrival λ to service rate µ [14–16].

The M/M/m/FIFO/m+N queueing system with finite ca-

pacity and impatient customers. Sometimes it may hap-
pen that customers should be served before their deadlines.
Hence, we will consider m-server queueing system with lim-
ited waiting room (N ) with FIFO queueing discipline and
limited waiting time in the queue (Tw, it is assumed to be
with an exponential distribution with parameter δ). The job
is waiting in the queue for a time Tw. If newly arriving cus-
tomers find m + N customers in systems, they are lost [16].

The steady-state probability of the system being empty is
obtained from:

π0 =









m
∑

k=0

ρk

k!
+

ρm

m!

m+N
∑

r=1

ρr

r
∏

n=1

(

m + n
δ

µ

)









−1

. (5)

The probability that jobs will be lost because of exceeding
the time limit is given by:

πw =









δ

λ
·
ρm

m!
·

m+N
∑

r=1

rρr

r
∏

n=1

(

m + n
δ

µ

)









· π0. (6)

The probability that the newly arriving customers are lost
because there are m + N jobs in system has the following
form:
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πm+N =

ρm+N

m!
π0

N
∏

n=1

(

m + n
δ

µ

) . (7)

The probability that jobs will be lost is as follows:

πl = πw · πm+N . (8)

The M/M/m/FIFO/N/F closed queueing system with finite

population of N jobs. In the presented model it is assumed
that the number of jobs does not exceed the number N and
the number of servers is m. In the industrial processes, it is
a typical case that the jobs for service come from a limit-
ed number of objects [15]. The steady-state probability of no
jobs in systems is given by:

π0=





m
∑

i=0

N !

i!(N−i)!
ρi+

N
∑

j=m+1

N !

m!(N−j)!mj−m
ρj





−1

. (9)

We may calculate the mean number of jobs in a system from
the following expression:

K = π0N !a,

a =
m

∑

i=0

i

i!(N − i)!
ρi +

N
∑

j=m+1

j

m!(N − j)!mj−m
ρj.

(10)

4. Optimization by nature-inspired

metaheuristics

In the literature, we often encounter scheduling problems, but
the problems of structure optimization of queueing systems
are treated quite superficially. A comparison of many opti-
mization techniques dedicated to solution of permutation flow
shop problem with the makespan criterion can be found in
[17]. Due to the complexity of flow shop scheduling, we have
good solution techniques, for example Johnson’s algorithm for
two machine problems, constructive algorithm CDS or NEH
[13, 18] Many studies describe the tabu search approach in
solving the flow shop problem, for example [19–21]. Nature-
inspired metaheuristics were also used to solve the flow shop
problem. The application of particle swarm optimization was
presented in [22], while ant colony algorithms can be found
in [23]. The article aims to examine whether firefly and cock-
roach algorithms can be used to solve such problems. All
experiments were performed in Matlab under Windows 7 op-
erating system.

4.1. Optimization of permutation flow shop problem. The
firefly algorithm and cockroaches swarm optimization algo-
rithm were originally developed for continuous optimization
problems. However, many optimization tasks are discrete. The
FA and CSO algorithms can be used to solve discrete opti-
mization problems, but such application requires some addi-
tional assumptions. Recall the appropriate scheduling of jobs
(permutation) is a solution of the flow shop problem. A suit-
able encoding scheme of jobs sequence (equivalent to posi-
tions of entities) is very important issue in applying consid-
ered algorithms to flow shop scheduling problem.

Permutation is often encoded in the form of a vec-
tor, which can be represented as a X l

i = (xl
i1,

xl
i2, . . ., x

l
ij , . . ., x

l
in), where i – number of individual, j –

the position of the job, l – number generation. Each value xk
ij

must be a positive integer. Unfortunately, as a result of FA
and CSO algorithms to optimize these types of problems, we
receive vector consisting of real numbers, which is difficult to
interpret. Therefore, in the paper, we encoded a schedule in
other way - in the form of 0-1 matrix of ranked probabilities
(n × n matrix, n is the number of jobs), as shown in [24].
Let X l

i = [xl
ijk ] be the matrix (equivalent to the position of

the individual), where each value xl
ijk represents possibility

assignment j-th job of i-th individual in k-th position of the
schedule at iteration l [24]. This matrix has binary numbers
and shows to which position (in schedule) the job is assigned.
Therefore, the probability that the j-th job will be ranked at
position k takes the value 0 or 1. If this probability is equal
to 1 then the j-th job has been ranked at the position k-th,
otherwise it is equal to 0. According to [24], we assume that
all individuals (fireflies and cockroaches) are represented by
binary variables (see Table 1).

Table 1

Definition of entity for sequence (2 1 3 4)

Job (j)

Position (k)

1 2 3 4

1 0 1 0 0

2 1 0 0 0

3 0 0 1 0

4 0 0 0 1

As a result of original firefly and cockroach algorithms,
we can get the real numbers in a schedule. In original fire-
fly algorithm, after movement fireflies and in original CSO
algorithm, after “going in swarm” and “dispersing” proce-
dures, the obtained values in the matrix would adopt the form
of real numbers outside the range <0, 1>. Therefore, these
values should be converted to the probabilities values (range
< 0, 1 >) by using the appropriate formula, e.g. the sigmoid
function in [24]. It should be noted, that each entity assigns
jobs to position in schedule based on its changes of prob-
abilities. In the next step, we have to change the obtained
matrix of probabilities to the binary matrix. Thus, the maxi-
mum probability (Pbest) is searched for each job in the matrix
of probabilities. The value of Pbest is converted to 1 if the
position k with the highest probability is selected and the job
j is placed in this position (in this position we have not yet
assigned any job). If this position is already occupied, the
second probability is searched (in order from the largest) and
its value is changed to 1. All other values in the row take
the value “0”. Detailed description of FA application to flow
shop problem with conversion procedure of the firefly posi-
tion (from real numbers to the change of the probabilities) is
presented in [24].

We propose to transform each element of the matrix (xi)
by the following formula:
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Xi =
xi − xmin

i

xmax
i − xmin

i

, (11)

where Xi achieves the result belonging to < 0, 1 >, xmax
i and

xmin
i are the defined maximum and minimum value of xi.

In these algorithms, the space dimension is equal to num-
ber of jobs. The initial populations of individuals are gener-
ated according to the formula:

xi = xmin
i + rand · (xmax

i − xmin
i ). (12)

The used firefly-scheduling mechanism is outlined as follows:

Similarly, in the case of CSO algorithm, we construct a
new solution with change the cockroach position from contin-
uous to discrete value (see “convert rule” presented above).

The pseudo-code of the used cockroach-scheduling mecha-
nism can be stated as follows:

In order to test the effectiveness and performance of FA
and CSO algorithm, we applied and tested these algorithms
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for permutation flow shop problem to minimize the maximum
completion time (makespan) and chose Taillard instances to
our experiments [25]. Data describing the problem can be
represented as a matrix of processing time with the number
of rows and columns, respectively, equal to the number of
machines and jobs.

Experiments were performed 10 times for each test in-
stance, with the parameters of the algorithms. A set of flow
shop problem instances included 12 Taillard instances (see
Table). Among obtained results, the best, the worst and the
average value of all obtained results were selected. For the
best value (smallest makespan) obtained by using selected
algorithms we determined the relative deviation of the found
solution from the best known values Copt of Taillard instances
by the following formula:

Dev =
CMetaheuristic − Copt

Copt

· 100. (13)

In the case of cockroach algorithm we set the following value
of parameters: w = 0.7, step = 2.5, visual = 1. The values of
firefly algorithm parameters were: α = 1, β0 = 1, γ = 1. The

population in CA and FA algorithms is 30 individuals, the
number of iterations is 1000, xmax

i = 3.2 and xmin
i = −2.5.

In 031-056 Taillard instances we set 50 individuals.

Obtained results of firefly and cockroach algorithms are
similar (see Table 2). Comparing these two algorithms we take
into account the makespan value and the number of iterations
required to obtain this value. For all tested instances the val-
ue of Dev are less than 10%. In most cases firefly algorithm
needs less number of iterations (see No. iteration in Table 2).
We can conclude that these algorithms are the potential solu-
tion of permutation flow shop problems with correct value of
parameters.

The execution time is another indicator of the quality, but
it may not be a good comparison due to different hardware
and implemented language used for algorithms. Therefore, we
do not take it into account.

In our experiments, for the flow shop scheduling prob-
lem, firefly and cockroach algorithms are shown to be better
than the simulated annealing (SA) but worse than tabu search
algorithm (TS) presented in [19] (see Table 3).

Table 2
Results obtained by the discrete-firefly and discrete-cockroach approaches

Taillard instances
(jobs × machines)

Known best solution
Copt

Firefly algorithm (FA) Cockroach algorithm (CSO)

CF A best/worst No. iteration Dev CCSO best/worst No. iteration Dev

001 (20×5) 1278 1278/1324 112 0 1278/1339 246 0

002 (20×5) 1359 1366/1373 194 0.52 1366/1383 84 0.52

011 (20×10) 1582 1625/1701 270 2.72 1619/1688 413 2.33

016 (20×10) 1397 1459/1634 674 4.44 1477/1495 443 5.73

021 (20×20) 2297 2378/2405 782 3.53 2375/2407 864 3.396

026 (20×20) 2226 2292/2340 541 2.96 2334/2364 918 4.85

031 (50×5) 2724 2742/2791 213 0.66 2728/2757 65 0.15

036 (50×5) 2829 2917/2970 276 3.11 2870/2888 484 1.45

041 (50×10) 2991 3245/3308 262 8.49 3221/3229 521 7.69

046 (50×10) 3006 3183/3251 234 5.89 3192/3257 816 6.19

051 (50×20) 3771 4138/4222 251 9.73 4102/4212 864 8.78

056 (50×20) 3679 3995/4052 321 8.59 4033/4142 823 9.62

Table 3
Comparison of our selected results with results of SA and Tabu Search from literature [19]

Taillard instances
(jobs × machines)

SA TS FA CSO

001 (20×5) 1324 1278 1278 1278

002 (20×5) 1368 1359 1366 1366

011 (20×10) 1743 1582 1625 1619

021 (20×20) 2485 2297 2378 2375

031 (50×5) 2791 2724 2742 2728

041 (50×10) 3399 3037 3245 3221

051 (50×20) 4438 3886 4138 4102
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4.2. Optimization of queueing systems. The optimization
of queueing systems is very difficult, because there is not any
general method to solve these problems. We also were trying
to optimize some queueing systems by nature-inspired meta-
heuristics [16]. There are studies on the use of the genetic
algorithms to solve various problems of optimization of some
queueing systems, for example [26]. In the paper, we consid-
er the optimization of system’s structure, which is to find the
correct number of servers m or correct number of waiting
places N . We used other methods (e.g. genetic algorithm) to
prepared test instances.

In the case of M/M/m/FIFO/m+N queueing system with
impatient customers we seek the number of servers m and
the number of waiting places N that maximize all profits.
The objective function is calculated according to the formula:

max → f(m, N) = c1λ(1 − πl) − c2(m + N), (14)

where πl is obtained using Eq. (8), parameters c1 and c2

denote the profit on job service and the cost of server depre-
ciation.

For M/M/m/FIFO/N/F queueing system we seek the num-
ber of servers m that minimize the overall costs of its opera-
tion. Here we get the following objective function:

min → f(m) = r1m + r2K, (15)

where r1 is the cost of server maintenance and r2 is the cost
of existing jobs in the systems.

In order to examine these algorithms, 10 runs were com-
pleted for each test instance. In all experiments, the positions
of cockroaches and fireflies have been rounded to the nearest
integer value using round(xi). The population was 30 indi-
viduals, each run was terminated after 50 iterations. The val-
ues of firefly algorithm parameters were: α = 0.1, β0 = 0.1,
γ = 1. In the case of cockroach algorithm we set the follow-
ing value of parameters: w = 0.681, step = 0.5, visual = 5.
In all considered cases we assume that parameters m and N

belong to range < 1, 50 >.
The conducted experiments show that the firefly and cock-

roach algorithms can be used to solve the problems of queue-
ing system optimization (see Table 4). They achieved similar
results for queueing systems. In the worst case, the optimum
of servers’ number and waiting places with use both algo-
rithms can be found in 8 runs out of 10. These algorithms
are very efficient. In most cases we can reach the maximum
value of the objective function and the optimum of unknown
parameters within 20 iterations (see No. iteration in Table 4).

We conducted many experiments, for the examples pre-
sented in the study, the use of 30 individuals was sufficient to
obtain the best value.

Table 4
Results obtained by the discrete-firefly and discrete-cockroach approaches (m, N ∈< 1, 50 > for M/M/m/FIFO/m+N, m ∈< 1, 50 > for

M/M/m/FIFO/N/F)

Queueing system
Firefly algorithm Cockroach algorithm

The best obtained value
and % of correct solution

Objective
function

No.
iteration

The best obtained value
and % of correct solution

Objective
function

No.
iteration

Case 1:
M/M/m/FIFO/m+N
λ = 10, µ = 2

c1 = c2 = 4, δ = 5

m = 1, N = 1

90%
24.5374 5 m = 1, N = 1

80%
24.5374 3

Case 2:
M/M/m/FIFO/m+N
λ = 5, µ = 2, c1 = 2,
c2 = 4,
δ = 1

m = 1, N = 1

80%
1.2669 7 m = 1, N = 1

80%
1.2669 7

Case 3:
M/M/m/FIFO/m+N,
λ = 100, µ = 2

c1 = 4, c2 = 2, δ = 1

m = 1, N = 1

90%
395.6989 4 m = 1, N = 1

90%
395.6989 7

Case 4:
M/M/m/FIFO/N/F
λ = 1, µ = 1

N = 4, r1 = 1, r2 = 4

m = 3

100%
11.1633 17 m = 3

100%
11.1633 19

Case 5:
M/M/m/FIFO/N/F
λ = 10, µ = 1

N = 4, r1 = 1, r2 = 4

m = 1

100%
16.60 12 m = 1

100%
16.60 15

Case 6:
M/M/m/FIFO/N/F
λ = 100, µ = 5

N = 14, r1 = 1, r2 = 4

m = 1

100%
56.80 11 m = 1

100%
56.80 19
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5. Conclusions

In the study we tested the firefly and cockroach algorithms for
optimization of queueing systems and solution of permutation
flow shop problems. The experiments show that these methods
can be used to solve these problems. The firefly and cockroach
algorithms are simple to implement, but their parameters may
depend on type and size of the optimized problems. It should
be mentioned that the number of iterations needed to find
the best value also depends on the generated initial solution.
There are many potential applications of these algorithms to
optimization problems. In the future we will focus on the
application of these algorithms in solving other optimization
problems. We would like to use swarm intelligence to solve
a problem that connects scheduling and queueing jobs in a
complex structure.

Acknowledgements. The authors would like to thank the ref-
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