PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat transfer improvement using additive manufacturing technologies: a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To provide a comprehensive review of additive manufacturing use in heat transfer improvement and to carry out the economic feasibility of additive manufacturing compared to conventional manufacturing. Heat transfer improvement is particularly interesting for different industrial sectors due to its economic, practical, and environmental benefits. Three heat transfer improvement techniques are used: active, passive, and compound. Design/methodology/approach: According to numerous studies on heat transfer enhancement devices, most configurations with strong heat transfer performance are geometrically complex. Thus, those configurations cannot be easily manufactured using conventional manufacturing. With additive manufacturing, almost any configuration can be manufactured, with the added benefit that the produced parts’ surface characteristics can enhance heat transfer. It can, however, lead to a significant pressure drop increase that will reduce the overall performance. In the given article, a comparison of the capital cost of a 100 MW parabolic trough power plant has been carried out, considering two types of solar receivers; the first is manufactured using conventional methods, and the second uses additive manufacturing. The heat transfer of the new receiver configuration is investigated using computational fluid dynamics through ANYS Fluent. Findings: Although the cost of additive manufacturing machines and materials is high compared to conventional manufacturing, the outcome revealed that the gain in efficiency when using additive-manufactured receivers leads to a reduction in the number of receiver tubes and the number of solar collectors needed in the solar field It implies a considerable reduction of parabolic trough collector plant capital cost, which is 20.7%. It can, therefore, be concluded that, even if initial setup expenses are higher, additive manufacturing could be more cost- effective than traditional manufacturing. Practical implications: With the reduction of the parabolic trough collector plant capital cost, the levelized cost of electricity will eventually be reduced, which will play a role in increasing the use of solar thermal energy. Originality/value: No review studies discuss the manufacturing potential and cost- effectiveness potential of additive manufacturing when producing heat transfer improvement equipment, especially when producing long pieces. In addition, the paper uses a novel receiver configuration to investigate the economic aspect.
Rocznik
Strony
30--41
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
  • Euromed Research Institute, Euromed Polytechnic School, Euro-Mediterranean University of Fes, Route de Meknes, 30000 Fes, Morocco
autor
  • Euromed Research Institute, Euromed Polytechnic School, Euro-Mediterranean University of Fes, Route de Meknes, 30000 Fes, Morocco
autor
  • Optoelectronics and Energetic Techniques Applied (OETA) Team, University Moulay Ismail, FST, B.P. 509, Boutalamine, Errachidia, Morocco
autor
  • Euromed Research Institute, Euromed Polytechnic School, Euro-Mediterranean University of Fes, Route de Meknes, 30000 Fes, Morocco
Bibliografia
  • 1. International Energy Agency (IEA), World Energy Outlook 2022. Available from: https://www.iea.org/reports/world-energy-outlook-2022
  • 2. H. Lund, Renewable energy strategies for sustainable development, Energy 32/6 (2007) 912-919. DOI: https://doi.org/10.1016/j.energy.2006.10.017
  • 3. A.B. Awan, M.N. Khan, M. Zubair, E. Bellos, Commercial parabolic trough CSP plants: Research trends and technological advancements, Solar Energy 211 (2020) 1422-1458. DOI: https://doi.org/10.1016/j.solener.2020.09.072
  • 4. L. Szabo, Additive Manufacturing of Cooling Systems Used in Power Electronics. A Brief Survey, Proceedings of the 29th International Workshop on Electric Drives: Advances in Power Electronics for Electric Drives “IWED”, Moscow, Russian Federation, 2022, 1-8. DOI: https://doi.org/10.1109/IWED54598.2022.9722580
  • 5. M. Sarap, A. Kallaste, P.S. Ghahfarokhi, H. Tiismus, T. Vaimann, Utilization of Additive Manufacturing in the Thermal Design of Electrical Machines: A Review, Machines 10/4 (2022) 251. DOI: https://doi.org/10.3390/machines10040251
  • 6. M.H. Mousa, N. Miljkovic, K. Nawaz, Review of heat transfer enhancement techniques for single phase flows, Renewable and Sustainable Energy Reviews 137 (2021) 110566. DOI: https://doi.org/10.1016/j.rser.2020.110566
  • 7. A. Saysroy, S. Eiamsa-ard, Periodically fully-developed heat and fluid flow behaviors in a turbulent tube flow with square-cut twisted tape inserts, Applied Thermal Engineering 112 (2017) 895-910. DOI: https://doi.org/10.1016/j.applthermaleng.2016.10.154
  • 8. S. Eiamsa-ard, P. Promvonge, Thermal characteristics in round tube fitted with serrated twisted tape, Applied Thermal Engineering 30/13 (2010) 1673-1682. DOI: https://doi.org/10.1016/j.applthermaleng.2010.03.026
  • 9. K. Hosseinzadeh, A.R. Mogharrebi, A. Asadi, M. Paikar, D.D. Ganji, Effect of fin and hybrid nano-particles on solid process in hexagonal triplex Latent Heat Thermal Energy Storage System, Journal of Molecular Liquids 300 (2020) 112347. DOI: https://doi.org/10.1016/j.molliq.2019.112347
  • 10. O. Aourik, M. Othmani, B. Saadouki, K. Abouzaid, A. Chouaf, Fracture toughness of ABS additively manufactured by FDM process, Journal of Achievements in Materials and Manufacturing Engineering 109/2 (2021) 49-58. DOI: https://doi.org/10.5604/01.3001.0015.6258
  • 11. P. Baras, J. Sawicki, Numerical analysis of mechanical properties of 3D printed aluminium components with variable core infill values, Journal of Achievements in Materials and Manufacturing Engineering 103/1 (2020) 16-24. DOI: https://doi.org/10.5604/01.3001.0014.6912
  • 12. C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, S.T. Newman, Invited review article: Strategies and processes for high quality wire arc additive manufacturing, Additive Manufacturing 22 (2018) 672-686. DOI: https://doi.org/10.1016/j.addma.2018.06.020
  • 13. B.M. Nafis, R. Whitt, A.C. Iradukunda, D. Huitink, Additive Manufacturing for Enhancing Thermal Dissipation in Heat Sink Implementation: A Review, Heat Transfer Engineering 42/12 (2021) 967-984. DOI: https://doi.org/10.1080/01457632.2020.1766246
  • 14. M. Wong, I. Owen, C.J. Sutcliffe, Pressure loss and heat transfer through heat sinks produced by selective laser melting, Heat Transfer Engineering 30/13 (2009) 1068-1076. DOI: https://doi.org/10.1080/01457630902922228
  • 15. H. Moon, N. Miljkovic, W.P. King, High power density thermal energy storage using additively manufactured heat exchangers and phase change material, International Journal of Heat and Mass Transfer 153 (2020) 119591. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119591
  • 16. Z.S. Kareem, M.N. Mohd Jaafar, T.M. Lazim, S. Abdullah, A.F. Abdulwahid, Passive heat transfer enhancement review in corrugation, Experimental Thermal and Fluid Science 68 (2015) 22-38. DOI: https://doi.org/10.1016/j.expthermflusci.2015.04.012
  • 17. L. Zheng, Y. Xie, D. Zhang, Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3-water nanofluid, International Journal of Heat and Mass Transfer 111 (2017) 962-981. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.062
  • 18. M.E. Nakhchi, J.A. Esfahani, Performance intensification of turbulent flow through heat exchanger tube using double V-cut twisted tape inserts, Chemical Engineering and Processing - Process Intensification 141 (2019) 107533. DOI: https://doi.org/10.1016/j.cep.2019.107533
  • 19. M.A. Akhavan-Behabadi, M. Shahidi, M.R. Aligoodarz, An experimental study on heat transfer and pressure drop of MWCNT-water nano-fluid inside horizontal coiled wire inserted tube, International Communications in Heat and Mass Transfer 63 (2015) 62-72. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2015.02.013
  • 20. P. Promvonge, Thermal augmentation in circular tube with twisted tape and wire coil turbulators, Energy Conversion and Management 49/11 (2008) 2949-2955. DOI: https://doi.org/10.1016/j.enconman.2008.06.022
  • 21. K. Hosseinzadeh, M.A.E. Moghaddam, A. Asadi, A.R. Mogharrebi, D.D. Ganji, Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation, Renewable Energy 154 (2020) 497-507. DOI: https://doi.org/10.1016/j.renene.2020.03.054
  • 22. K. Torii, K.M. Kwak, K. Nishino, Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers, International Journal of Heat and Mass Transfer 45/18 (2002) 3795-3801. DOI: https://doi.org/10.1016/S0017-9310(02)00080-7
  • 23. S.M. Borhani, M.J. Hosseini, A.A. Ranjbar, R. Bahrampoury, Investigation of phase change in a spiral-fin heat exchanger, Applied Mathematical Modelling 67 (2019) 297-314. DOI: https://doi.org/10.1016/j.apm.2018.10.029
  • 24. B. Kurşun, Thermal performance assessment of internal longitudinal fins with sinusoidal lateral surfaces in parabolic trough receiver tubes, Renewable Energy 140 (2019) 816-827. DOI: https://doi.org/10.1016/j.renene.2019.03.106
  • 25. S. Biswakarma, S. Roy, B. Das, B. Kumar Debnath, Performance analysis of internally helically v-grooved absorber tubes using nanofluid, Thermal Science and Engineering Progress 18 (2020) 100538. DOI: https://doi.org/10.1016/j.tsep.2020.100538
  • 26. D. Sahel, H. Ameur, R. Benzeguir, Y. Kamla, Enhancement of heat transfer in a rectangular channel with perforated baffles, Applied Thermal Engineering 101 (2016) 156-164. DOI: https://doi.org/10.1016/j.applthermaleng.2016.02.136
  • 27. H.R. Abbasi, E. Sharifi Sedeh, H. Pourrahmani, M.H. Mohammadi, Shape optimization of segmental porous baffles for enhanced thermo-hydraulic performance of shell-and-tube heat exchanger, Applied Thermal Engineering 180 (2020) 115835. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115835
  • 28. X. Gu, Y. Luo, X. Xiong, K. Wang, Y. Wang, Numerical and experimental investigation of the heat exchanger with trapezoidal baffle, International Journal of Heat and Mass Transfer 127/A (2018) 598-606. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.045
  • 29. Y. Liu, J. Wen, S. Wang, J. Tu, Numerical investigation on the shell and tube heat exchanger with baffle leakage zones blocked, International Journal of Thermal Sciences 165 (2021) 106959. DOI: https://doi.org/10.1016/j.ijthermalsci.2021.106959
  • 30. P. Liu, J. Lv, F. Shan, Z. Liu, W. Liu, Effects of rib arrangements on the performance of a parabolic trough receiver with ribbed absorber tube, Applied Thermal Engineering 156 (2019) 1-13. DOI: https://doi.org/10.1016/j.applthermaleng.2019.04.037
  • 31. C. Chang, A. Sciacovelli, Z. Wu, X. Li, Y. Li, M. Zhao, J. Deng, Z. Wang, Y. Ding, Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid, Applied Energy 220 (2018) 337-350. DOI: https://doi.org/10.1016/j.apenergy.2018.03.091
  • 32. M.S. Nazir, A. Shahsavar, M. Afrand, M. Arıcı, S. Nižetić, Z. Ma, H.F. Öztop, A comprehensive review of parabolic trough solar collectors equipped with turbulators and numerical evaluation of hydrothermal performance of a novel model, Sustainable Energy Technologies and Assessments 45 (2021) 101103. DOI: https://doi.org/10.1016/j.seta.2021.101103
  • 33. H. Bucak, F. Yılmaz, The current state on the thermal performance of twisted tapes: A geometrical categorisation approach, Chemical Engineering and Processing - Process Intensification 153 (2020) 107929. DOI: https://doi.org/10.1016/j.cep.2020.107929
  • 34. S. Ghadirijafarbeigloo, A.H. Zamzamian, M. Yaghoubi, 3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts, Energy Procedia 49 (2014) 373-380. DOI: https://doi.org/10.1016/j.egypro.2014.03.040
  • 35. X. Gong, F. Wang, H. Wang, J. Tan, Q. Lai, H. Han, Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting, Solar Energy 144 (2017) 185-202. DOI: https://doi.org/10.1016/j.solener.2017.01.020
  • 36. P. Liu, N. Zheng, Z. Liu, W. Liu, Thermal-hydraulic performance and entropy generation analysis of a parabolic trough receiver with conical strip inserts, Energy Conversion and Management 179 (2019) 30-45. DOI: https://doi.org/10.1016/j.enconman.2018.10.057
  • 37. X. Song, G. Dong, F. Gao, X. Diao, L. Zheng, F. Zhou, A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts, Energy 77 (2014) 771-782. DOI: https://doi.org/10.1016/j.energy.2014.09.049
  • 38. A. Mwesigye, T. Bello-Ochende, J.P. Meyer, Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts, International Journal of Thermal Sciences 99 (2016) 238-257. DOI: https://doi.org/10.1016/j.ijthermalsci.2015.08.015
  • 39. E. Bellos, C. Tzivanidis, D. Tsimpoukis, Multi-criteria evaluation of parabolic trough collector with internally finned absorbers, Applied Energy 205 (2017) 540-561. DOI: https://doi.org/10.1016/j.apenergy.2017.07.141
  • 40. M. Wong, S. Tsopanos, C.J. Sutcliffe, I. Owen, Selective laser melting of heat transfer devices, Rapid Prototyping Journal 13/5 (2007) 291-297. DOI: https://doi.org/10.1108/13552540710824797
  • 41. K.L. Kirsch, K.A. Thole, Pressure loss and heat transfer performance for additively and conventionally manufactured pin fin arrays, International Journal of Heat and Mass Transfer 108/B (2017) 2502-2513. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.095
  • 42. K.L. Kirsch, K.A. Thole, Experimental investigation of numerically optimized wavy microchannels created through additive manufacturing, Journal of Turbomachinery 140/2 (2018) 021002. DOI: https://doi.org/10.1115/1.4038180
  • 43. M.S. Aris, I. Owen, C J. Sutcliffe, The development of active vortex generators from shape memory alloys for the convective cooling of heated surfaces, International Journal of Heat and Mass Transfer 54/15-16 (2011) 3566-3574. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.030
  • 44. J.Y. Ho, K.K. Wong, K.C. Leong, Saturated pool boiling of FC-72 from enhanced surfaces produced by Selective Laser Melting, International Journal of Heat and Mass Transfer 99 (2016) 107-121. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.073
  • 45. J. Byiringiro, M. Chaanaoui, S. Vaudreuil, Potential of Additive Manufacturing for Complex System Configurations to Improve Heat Transfer, in: K. Zarbane, Z. Beidouri (eds), Proceedings of CASICAM 2022 “CASICAM 2022”, Springer Tracts in Additive Manufacturing, Springer, Cham, 265-275. DOI: https://doi.org/10.1007/978-3-031-32927-2_24
  • 46. C. Wei, G.A.V. Diaz, K. Wang, P. Li, 3D-printed tubes with complex internal fins for heat transfer enhancement-CFD analysis and performance evaluation, AIMS Energy 8/1 (2020) 27-47. DOI: https://doi.org/10.3934/energy.2020.1.27
  • 47. C.K. Stimpson, J.C. Snyder, K.A. Thole, D. Mongillo, Roughness effects on flow and heat transfer for additively manufactured channels, Journal of Turbo¬machinery 138/5 (2016) 051008. DOI: https://doi.org/10.1115/1.4032167
  • 48. S.A. Manavi, E.Y. Kenig, Numerical Simulation of Forced Convection in a Microchannel with Realistic Roughness of 3D Printed Surface, Computer Aided Chemical Engineering 46 (2019) 823-828. DOI: https://doi.org/10.1016/B978-0-12-818634-3.50138-7
  • 49. C.K. Stimpson, J.C. Snyder, K.A. Thole, D. Mongillo, Scaling roughness effects on pressure loss and heat transfer of additively manufactured channels, Journal of Turbomachinery 139/2 (2017) 021003. DOI: https://doi.org/10.1115/1.4034555
  • 50. L. Ventola, F. Robotti, M. Dialameh, F. Calignano, D. Manfredi, E. Chiavazzo, P. Asinari, Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering, International Journal of Heat and Mass Transfer 75 (2014) 58-74. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.037
  • 51. D. Saltzman, M. Bichnevicius, S. Lynch, T.W. Simpson, E.W. Reutzel, C. Dickman, R. Martukanitz, Design and evaluation of an additively manufactured aircraft heat exchanger, Applied Thermal Engineering 138 (2018) 254-263. DOI: https://doi.org/10.1016/j.applthermaleng.2018.04.032
  • 52. E. Klein, J. Ling, V. Aute, Y. Hwang, R. Radermacher, A Review of Recent Advances in Additively Manufactured Heat Exchangers, Proceedings of the International Refrigeration and Air Conditioning Conference “IRACC 2018”, West Lafayette, USA, 2018, 1983.
  • 53. K. Hosseinzadeh, S. Roghani, A.R. Mogharrebi, A. Asadi, D.D. Ganji, Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic, Journal of Thermal Analysis and Calorimetry 143 (2021) 1413-1424. DOI: https://doi.org/10.1007/s10973-020-10376-9
  • 54. L. Collins, J.A. Weibel, L. Pan, S.V. Garimella, Evaluation of additively manufactured microchannel heat sinks, IEEE Transactions on Components, Packaging and Manufacturing Technology 9/3 (2019) 446-457. DOI: https://doi.org/10.1109/TCPMT.2018.2866972
  • 55. N.N. Kumbhar, A.V. Mulay, Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review, Journal of The Institution of Engineers (India): Series C 99/4 (2018) 481-487. DOI: https://doi.org/10.1007/s40032-016-0340-z
  • 56. N. Hopkinson, P. Dickens, Analysis of rapid manufacturing - Using layer manufacturing processes for production, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 217/1 (2003) 31-39. DOI: https://doi.org/10.1243/095440603762554596
  • 57. Roland Berger Strategy Consultants, Additive manufacturing ‒ A game changer for the manufacturing industry ?, Available from: https://www.rolandberger.com/publications/publication_pdf/roland_berger_additive_manufacturing_1.pdf
  • 58. D.E. Benhadji Serradj, A.B. Sebitosi, S.O. Fadlallah, Design and performance analysis of a parabolic trough power plant under the climatological conditions of Tamanrasset, Algeria, International Journal of Environmental Science and Technology 19/4 (2022) 3359-3376. DOI: https://doi.org/10.1007/s13762-021-03350-x
  • 59. P. Kurup, S. Glynn, S. Akar, Manufacturing cost analysis of advanced parabolic trough collector, AIP Conference Proceedings 2445/1 (2022) 020006. DOI: https://doi.org/10.1063/5.0085663
  • 60. T.U. Shinde, V.H. Dalvi, R.G. Patil, C.S. Mathpati, S.V. Panse, J.B. Joshi, Thermal performance analysis of novel receiver for parabolic trough solar collector, Energy 254/A (2022) 124343. DOI: https://doi.org/10.1016/j.energy.2022.124343
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fde5b51a-4768-4724-b107-a29c2638a4fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.