PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accuracy analysis of aircraft positioning using navigational data from AVIA-W radar

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza dokładności pozycjonowania statku powietrznego na podstawie danych nawigacyjnych z radaru AVIA-W
Języki publikacji
EN
Abstrakty
EN
The paper presents an analysis of the accuracy of determination of parameters of the position of aircraft using data from the AVIA-W radar. In the first place, the authors determined the position of the aircraft as well as the range and azimuth parameters by the AVIA-W radar, located in Dęblin. This was followed by a determination of the absolute position error of the aircraft and the determination of the range and azimuth measurement error by the AVIA-W radar. The research test was carried out using a Diamond DA40 NG aircraft on which a GPS satellite receiver was mounted in order to determine the flight reference position. In addition, the range and azimuth measurements for the aircraft were acquired from the AVIA-W radar. Navigational calculations were conducted for polar and rectangular planar coordinates. Based on the performed research, the azimuth error was found to be -1.4°, while the radar range measurement error was equal to -0.04 km. The conducted research is experimental in its character. In the future it will be repeated and extended to the GCA-2000 radar, which is also located at Dęblin military airfield.
PL
W pracy przedstawiono analizę dokładności wyznaczenia parametrów pozycji statku powietrznego z użyciem danych z radaru AVIA-W. W pierwszej kolejności dokonano wyznaczenia pozycji statku powietrznego oraz określenia parametru zasięgu i azymutu przez radar AVIA-W, zlokalizowany w Dęblinie. Następnie dokonano wyznaczenia błędu absolutnego pozycji statku powietrznego oraz określenia błędu pomiaru zasięgu i azymutu przez radar AVIA-W. Test badawczy przeprowadzono z użyciem samolotu Diamond DA40 NG, na pokładzie którego zamontowano odbiornik satelitarny GPS w celu wyznaczenia pozycji odniesienia lotu. Dodatkowo z radaru AVIA-W pozyskano pomiary zasięgu i azymutu do statku powietrznego. Obliczenia nawigacyjne zrealizowano dla współrzędnych biegunowych i prostokątnych płaskich. Na podstawie wykonanych badań stwierdzono, że błąd azymutu wynosi -1,4°, z kolei błąd pomiaru zasięgu radaru wynosi -0,04 km. Przeprowadzone badania mają charakter eksperymentalny i w przyszłości zostaną powtórzone i rozszerzone o radar GCA-2000, który także znajduje się na lotnisku wojskowym Dęblin.
Słowa kluczowe
Rocznik
Tom
Strony
287--312
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Bibliografia
  • Articles and monographies:
  • Al Sadoon S.H.M., Elias B.H., Radar theoretical study: minimum detection range and maximum signal to noise ratio (SNR) equation by using MATLAB simulation program, “American Journal of Modern Physics” 2013, vol. 2(4), DOI: 10.11648/j. ajmp.20130204.20.
  • Bachmann S., Debrunner V., Zrnic D., Detection of Small Aircraft with Doppler Weather Radar, “Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing”, DOI: 10.1109/SSP.2007.4301297.
  • Brzozowski M., Myszka M., Lewandowski Z., Metoda badania rozróżnialności azymutalnej i odległościowej stacji radiolokacyjnych, “Problemy Techniki Uzbrojenia” 2004, vol. 33(92).
  • Brzozowski M., Myszka M., Lewandowski Z., Modrzewski A., Wykorzystanie metod precyzyjnego wyznaczania pozycji obiektów powietrznych za pomocą GPS do badań radaru dalekiego zasięgu RST-12M, “Problemy Techniki Uzbrojenia” 2007, vol. 36(101).
  • Brzozowski M., Lewandowski Z., Metoda określania rozróżnialności obiektów powietrznych przez urządzenia radiolokacyjne z wykorzystaniem lotów samolotów z zamontowanymi na pokładzie odbiornikami i rejestratorami pozycji, “Problemy Techniki Uzbrojenia” 2009, vol. 38(112).
  • Brzozowski M., Pakowski M., Myszka M., Michalczewski M., Winiarska U., The research of modern radar equipment conducted in the Air Force Institute of Technology by the application of military aircrafts, “Aviation Advances & Maintenance” 2017, vol. 1(40), DOI: 10.1515/afit-2017-0002.
  • Brzozowski M., Pakowski M., Nowakowski M., Myszka M., Michalczewski M., Radiolocation Devices for Detection and Tracking Small High-Speed Ballistic Objects-Features, Applications, and Methods of Tests, “Sensors” 2019, vol. 19, DOI: 10.3390/ s19245362.
  • Czekała Z., Parada radarów, Bellona, Warszawa 1999.
  • Džunda M., Dzurovčin P., Melníková L., Anti-Collision System for Small Civil Aircraft, “Applied Sciences” 2022, vol. 12, DOI: 10.3390/app12031648.
  • Gazit R., Aircraft Tracking Using GPS Position and Velocity Reports, “Proceedings of the 8th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1995)”, Palm Springs, CA, September 1995.
  • Goś A., Charakterystyka porównawcza radarów AVIA i GCA2000, [in:] Wybrane aspekty zabezpieczenia nawigacji lotniczej, ed. J. Ćwiklak, “Współczesna Nawigacja”, T. I, LAW, Dęblin 2019.
  • Grzegorzewski M., Navigating an aircraft by means of a position potentialin three dimensional space, “Annual of Navigation” 2005, vol. 9.
  • Khan R.H., Power D., Aircraft detection and tracking with high frequency radar, “Proceedings of the International Radar Conference 1995”, DOI: 10.1109/RADAR.1995.522517.
  • Lilly B., Cetinkaya D., Durak U., Tracking Light Aircraft with Smartphones at Low Altitudes, “Information” 2021, vol. 12, DOI: 10.3390/info12030105.
  • Maas J., Van Gent R., Hoekstra J., A portable primary radar for general aviation, “PLoS ONE” 2020, vol. 15(10), DOI: 10.1371/journal.pone.0239892.
  • Matuszewski J., Dudczyk J., Analiza skuteczności zakłóceń radiolokacyjnych systemu samoobrony statku powietrznego, “Elektronika: Konstrukcje, Technologie, Zastosowania” 2015, vol. 56(10), DOI: 10.15199/13.2015.10.17.
  • Matuszewski J., Metryka radaru dla potrzeb bazy danych samolotowych systemów samoobrony, “Przegląd Elektrotechniczny” 2015, vol. 91(3), DOI:10.15199/48.2015.03.18.
  • Nabaa N., Clary G., Cross J., Howard D., Thayer R., Integration of DGPS and Precision Tracking Radar for Aircraft Precision Approach, “Proceedings of the 57th Annual Meeting of The Institute of Navigation (2001)”, Albuquerque, NM, June 2001.
  • Osada E., Geodezja, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2001.
  • Pakowski M., Brzozowski M., Michalczewski M., Myszka M., Methods for Testing Military Radars Produced in Poland, “Proceedings of the 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)”, DOI: 10.1109/MetroAeroSpace.2018.8453542.
  • Pakowski M., Brzozowski M., Nowakowski M., Myszka M., Michalczewski M., Research on radar angular and range resolution with the use of a system assisting the pilots in maintenance of flight parameters, “Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace)”, DOI: 10.1109/MetroAeroSpace.2019.8869694.
  • Raboaca M.S., Dumitrescu C., Manta I., Aircraft Trajectory Tracking Using Radar Equipment with Fuzzy Logic Algorithm, “Mathematics” 2020, vol. 8, DOI: 10.3390/ math802020.
  • Rogers J.W., Tidwell C.J., Little A.D., Terminal area surveillance system, “Proceedings of the International Radar Conference 1995”, DOI: 10.1109/RADAR.1995.522598.
  • Sekine K., Kato F., Kageyama K., Itoh E., Data-Driven Simulation for Evaluating the Impact of Lower Arrival Aircraft Separation on Available Airspace and Runway Capacity at Tokyo International Airport, “Aerospace” 2021, vol. 8, DOI: 10.3390/aerospace8060165.
  • Semke W., Allen N., Tabassum A., Mccrink M., Moallemi M., Snyder K., Arnold E., Stott D., Wing M.G., Analysis of Radar and ADS-B Influences on Aircraft Detect and Avoid (DAA) Systems, “Aerospace” 2017, vol. 4, DOI: 10.3390/aerospace4030049.
  • Siergiejczyk M., Krzykowska K., Analiza i ocena wybranych systemów dozorowania w ruchu lotniczym, “TTS Technika Transportu Szynowego” 2013, vol. 20(10).
  • Siergiejczyk M., Siłkowska J., Analiza możliwości wykorzystania techniki multilateracji w dozorowaniu przestrzeni powietrznej, “Prace Naukowe Politechniki Warszawskiej. Transport” 2014, vol. 102.
  • Tao Z., Chunxia L., Quanhua L., Xinliang C., Tracking with nonlinear measurement model by coordinate rotation transformation, “Science China Technological Sciences” 2014, vol. 57, DOI: 10.1007/s11431-014-5694-y.
  • Truskowski A., Detecting aircraft made in stealth technology, “Scientific Journal of Polish Naval Academy” 2014, vol. 4(199), DOI: 10.5604/0860889X.1139635.
  • Internet sources:
  • https://www.defence24.pl/polskie-wojsko-chce-wymienic-radary-kontroli-rejonu-lotniska [access: 17.05.2023].
  • https://www.wojsko-polskie.pl/law/akademickie-centrum-szkolenia-lotniczego/#-gallery-4/ [access: 17.05.2023].
  • https://www.diamondaircraft.com/en/private-pilots/aircraft/da40/overview/ [access: 17.05.2023].
  • https://www.handheldgroup.com/globalassets/downloads/product-information/ data-sheets/low-res-website/en/nautiz-x8-data-sheet-en.pdf [access: 17.05.2023].
  • https://gis-support.pl/co-to-jest-qgis/ [access: 17.05.2023].
  • https://www.ais.pansa.pl/publikacje/aip-mil/ [access: 17.05.2023].
  • https://www.microsoft.com/pl-pl/microsoft-365/excel [access: 17.05.2023].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fde3dbed-a4b6-4fa7-869e-5f5a61367b76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.