PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synchronous reluctance motor analytical model cross-saturation and magnetization analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analityczny model silnika reluktancyjnego uwzględnmiający asymetrię magnetyczną i nasycenie rdzenia
Języki publikacji
EN
Abstrakty
EN
The synchronous reluctance motor design process is usually considering objectives that are in direct or indirect relationship with the rotor magnetic saliency ξ. The magnetic saliency is defined as the ratio of direct (d) Ld and quadrature (q) inductances Lq. Both inductances and their dependence on the dq-axis current plane are investigated with a non-linear analytical model in this paper. With the non-linear analytical model linked to the analysis procedures is also possible to determine the synchronous reluctance motor cross-saturation effect.
PL
W artykule analizowano asymetrię magnetyczną (saliency) wirnika silnika reluktancyjnego. Zastosowano model nieliniowy uwzględniający tę asymetrię i umożliwiający określenie efektu nasycenia.
Rocznik
Strony
108--112
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Faculty of Electrical Engineering and Communication, Department of Power Electrical and Electronic Engineering, Brno University of Technology, Brno 61600, Czech Republic
  • Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
  • Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
  • Faculty of Electrical Engineering and Communication, Department of Power Electrical and Electronic Engineering, Brno University of Technology, Brno 61600, Czech Republic
Bibliografia
  • [1] Z. Wei, “Finite element computation of synchronous reluctance motor," in 2011 IEEE International Conference on Microwave Technology Computational Electromagnetics, May 2011, pp. 391-394.
  • [2] S. Tahi and R. Ibtiouen, “Finite element calculation of the dqaxes inductances and torque of synchronous reluctance motor," in 2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Nov 2014, pp. 1-5.
  • [3] C. López, T. Michalski, A. Espinosa, and L. Romeral, “Rotor of synchronous reluctance motor optimization by means reluctance network and genetic algorithm," in 2016 XXII International Conference on Electrical Machines (ICEM), Sept 2016, pp. 2052-2058.
  • [4] P. Alotto, M. Barcaro, N. Bianchi, and M. Guarnieri, “Optimization of IPM motors with machaon rotor flux barriers," in Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation, May 2010.
  • [5] S. Stipetic, D. Zarko, and M. Kovacic, “Optimised design of permanent magnet assisted synchronous reluctance motor series using combined analytical - finite element analysis based approach," IET Electric Power Applications, vol. 10, no. 5, pp. 330- 338, 2016.
  • [6] M. Degano, H. Mahmoud, N. Bianchi, and C. Gerada, “Synchronous reluctance machine analytical model optimization and validation through finite element analysis," in 2016 XXII International Conference on Electrical Machines (ICEM), Sept 2016, pp. 585-591.
  • [7] H. Mahmoud and N. Bianchi, “Nonlinear analytical model of eccentric synchronous reluctance machines considering the iron saturation and slotting effect," IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2007-2015, May 2017.
  • [8] H. Mahmoud, N. Chiodetto, and N. Bianchi, “Magnetic field analytical computation in synchronous reluctance machines considering the iron saturation," in IEEE Energy Conversion Congress and Exposition (ECCE), Sept 2016, pp. 1-8.
  • [9] L. Alberti, M. Barcaro, and N. Bianchi, “Design of a low torque ripple fractional-slot interior permanent magnet motor," in IEEE Energy Conversion Congress and Exposition (ECCE), Sept 2012, pp. 509-516.
  • [10] M. Barcaro and N. Bianchi, “Torque ripple reduction in fractional-slot interior PM machines optimizing the flux-barrier geometries," in XXth International Conference on Electrical Machines (ICEM), Sept 2012, pp. 1496-1502.
  • [11] M. Barcaro, N. Bianchi, and F. Magnussen, “Rotor flux-barrier geometry design to reduce stator iron losses in synchronous IPM motors under FW operations," IEEE Transactions on Industry Applications, vol. 46, no. 5, pp. 1950-1958, Sept 2010.
  • [12] H. Mahmoud, G. Bacco, M. Degano, N. Bianchi, and C. Gerada, “Synchronous reluctance motor iron losses: Considering machine non-linearity at MTPA, FW, and MTPV operating conditions," IEEE Transactions on Energy Conversion, 2018.
  • [13] A. Domínguez, “Highlights in the history of the Fourier transform [retrospectroscope]," IEEE Pulse, vol. 7, no. 1, pp. 53-61, Jan 2016.
  • [14] N. Bianchi and T. M. Jahns, Design, analysis, and control of interior PM synchronous machines: tutorial course notes ; Seattle, Oct. 5, 2004. CLEUP, 2004.
  • [15] J. Barral, R. Bonnefille, S. Henry, and J. Mesiere, “Contribution to the modelisation of satured synchronous machines," in Proc. Conf. first Int. Conf. Elect. Mach.; Athens, Greece, vol. 3, Oct. 1980, p. 1476-1484.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fde02586-a355-4e86-922e-45051e456ecc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.