PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of polyethylenimine on the electrophoretic deposition of SiO2 and Ni/SiO2 coatings on 316L stainless steel

Identyfikatory
Warianty tytułu
PL
Wpływ polietylenoiminy na osadzanie elektroforetyczne powłok SiO2 i Ni/SiO2 na stali 316L
Języki publikacji
EN
Abstrakty
EN
The aim of the present work was to investigate the influence of polyethylenimine, a cationic polymer surfactant, on the microstructure and corrosion resistance of SiO2 and Ni/SiO2 coatings electrophoretically deposited on 316L stainless steel. The relationship between zeta potential and pH of the ethanol-based suspensions of SiO2 and Ni powder particles with addition of polyethylenimine was determined. The parameters of electrophoretic deposition process (applied voltage, time, distance between electrodes) were developed to prepare good quality coatings. Cathodophoresis from suspensions with polyethylenimine addition was performed with slightly lower applied voltage and time as compared to anodic deposition of coatings without surfactant. The microstructure of the coatings, their surface roughness and adhesion to the substrate were investigated. The protective behaviour of the coatings was studied by potentiodynamic measurements in 3.5% NaCl water solution. The microstructure and properties of the coatings were compared with those obtained without polyethylenimine addition. It was determined that the microstructure of SiO2 and Ni/SiO2 coatings deposited from suspensions containing polyethylenimine was more uniform and contained smaller amount of cracks and voids than the coatings achieved without polyelectrolyte. It was also observed that the quality improvement of the coatings deposited on 316L steel due to addition of polyelectrolyte with binding properties leads to increase of their corrosion resistance.
PL
Celem pracy było zbadanie wpływu polietylenoiminy (PEI) na stabilność zawiesin na bazie etanolu używanych do osadzania elektroforetycznego (EPD) powłok SiO2 i nanokompozytowych powłok Ni/SiO2 na stali 316L. Zbadano mikrostrukturę powłok oraz topografię powierzchni, przyczepność do podłoża i odporność na korozję w 3,5% roztworze NaCl.
Rocznik
Strony
184--189
Opis fizyczny
Bibliogr. 35 poz., fig., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Ferrous Metallurgy, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Surface Engineering & Materials Characterisation, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Ferrous Metallurgy, Kraków, Poland
Bibliografia
  • [1] Blicharski M.: Inżynieria materiałowa. Stal, Warszawa (2004).
  • [2] Atashin S., Pakshir M., Yazdani A.: Synergistic investigation into the marine parameters’ effect on the corrosion rate of AISI 316 stainless steel. Materials & Design 32 (2011) 1315÷1324.
  • [3] Wassilkowska A., Skowronek T., Rybicki S.: Microstructure investigation of premature corroded heat exchanger plates. Materials Testing 58 (2016) 218÷223.
  • [4] Adamczyk L., Pietrusiak A., Bala H.: Protective properties of PEDOT/ ABA coatings deposited from micellar solution on stainless steel. Archives of Metallurgy and Materials 56 (2011) 883÷889.
  • [5] Reddy I. N., Reddy V. R., Sridhara N., Rao V. S., Bhattacharya M., Bandyopadhyay P., Basavaraja S., Mukhopadhyay A. K., Sharma A. K., Dey A.: Development of SiO2 based thin film on metal foils for space application. Ceramics International 39 (2013) 8493÷8498.
  • [6] Di Maggio R., Fedrizzi L., Rossi S., Scardi P.: Dry and wet corrosion behavior of AISI 304 stainless steel coated by sol–gel ZrO2–CeO2 films. Thin Solid Films 286 (1996) 127÷135.
  • [7] Atik M., Aegerter M. A.: Corrosion resistant sol gel ZrO2 coatings on stainless steel. Journal of Non-Crystalline Solids 147-148 (1992) 813÷819.
  • [8] Atik M., De Lima Neto P., Avaca L. A., Aegerter M. A., Zarzycki J.: Protection of 316L stainless steel against corrosion by SiO2 coatings. Journal of Materials Science Letters 13 (1994) 1081÷1085.
  • [9] Curkovic L., Otmacic Curkovic H., Salopek S., Majic Renjo M., Šegota S.: Corrosion Science 77 (2013) 176÷184.
  • [10] Tomachuk C. R., Elsner C. I., Di Sarli A. R., Ferraz O. B.: Anti-corrosion performance of Cr + 6-free passivating layers applied on electrogalvanized. Materials Chemistry and Physics 119 (2010) 19÷29.
  • [11] Castro Y., Ferrari B., Moreno R., Duran A.: Corrosion behaviour of silica hybrid coatings produced from basic catalysed particulate sols by dipping and EPD. Surface and Coatings Technology 19 (2005) 228÷235.
  • [12] Chęcmanowski J. G., Głuszek J., Masalski J., Krysztafkiewicz A.: Rola nanokrzemionki w preparatyce powłok SiO2 otrzymywanych metodą zol– żel. Inżynieria Materiałowa 5 (2002) 359÷363.
  • [13] Walczak M.: Charakterystyka powłok ceramicznych SiO2 i SiO2–TiO2 otrzymywanych metodą zol–żel. Advanced in Science and Technology Research Journal 9 (2011) 80÷90.
  • [14] Szalkowska E., Masalski J., Gluszek J.: Electrochemical evaluation of protective properties of two-component SiO2–TiO2 coatings obtained by sol–gel method. Inżynieria Materiałowa 23 (2002) 503÷507.
  • [15] Bełtowska-Lehman E., Góral A., Indyka P.: Electrodeposition and characterization of Ni/Al2O3 nanocomposite coatings. Archives of Metallurgy and Materials 56 (2011) 919÷931.
  • [16] Ghalayani Isfahani A., Ghorbani M.: Electrophoretic deposition of Ni/SiO2 nanocomposite coating: Fabrication process and tribological and corrosion properties. Journal of Nano Research 26 (2014) 45÷51.
  • [17] Dickerson J. H., Boccaccini A. R.: Electrophoretic deposition of nanoparticles. Springer (2012).
  • [18] Burgos-Montes O., Moreno R.: Stability of concentrated suspensions of Al2O3–SiO2 measured by multiple light scattering. Journal of European Ceramic Society 29 (2009) 603÷610.
  • [19] Napper D. H., Netschey A.: Studies of the steric stabilization of colloidal particles. Journal of Colloid and Interface Science 37 (1971) 528÷535.
  • [20] Sonnefeld J., Gobel A., Vogelsberger W.: Surface charge density on spherical silica particles in aqueous alkali chloride solutions. Part 1. Experimental results. Colloid and Polymer Science 931 (1995) 273÷926.
  • [21] Franks G. V.: Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: isoelectric point shift and additional attraction. Journal of Colloid and Interface Science 249 (2002) 44÷51.
  • [22] Lau K. T., Sorrell C. C.: Electrophoretic mobilities of dissolved polyelectrolyte charging agent and suspended noncolloidal titanium during electrophoretic deposition. Materials Science Engineering B 176 (2011) 369÷381.
  • [23] Schiemann P., Alphonse P., Taberna P. L.: Synthesis of high surface area TiO2 coatings on stainless steel by electrophoretic deposition. Journal of Materials Research 28 (2013) 2023÷2030.
  • [24] Chung Y., Park H., Cho S. B., Yoon Y. S., Kim D. J.: Electrophoretic deposition behaviour of ZnO nanoparticles and their properties on conductive fabrics. Journal of Ceramic Processing Research 15 (2014) 331÷335.
  • [25] Mendoza C., Gonzalez Z., Castro Y., Gordo E., Ferrari B.: Improvement of TiN nanoparticles EPD inducing sternic stabilization in non-aqueous suspension. Journal of European Ceramic Society 36 (2016) 307÷317.
  • [26] Meszaros R., Thompson L., Bos M., Groot P.: Adsorption and electrokinetic properties of polyethylenimine on silica surfaces. Langmuir 18 (2002) 6164÷6169.
  • [27] Meszaros R., Varga I., Gilanyi T.: Adsorption of poly(ethyleneimine) on silica surfaces: effect of pH on the reversibility of adsorption. Langmuir 20 (2004) 5026÷5029.
  • [28] Avadiar L., Leong Y. K.: Interactions of PEI (polyethylenimine)–silica particles with citric acid in dispersions. Colloid and Polymer Science 289 (2011) 237÷245.
  • [29] Ratajski T., Kalemba-Rec I., Dubiel B.: Manufacturing, microstructure and corrosion resistance of electrophoretically deposited SiO2 and Ni/SiO2 coatings on X2CrNiMo17–12–2 steel. Archives of Metallurgy and Materials 61 (2016) 1221÷1227.
  • [30] Besra L., Liu M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science 52 (2007) 1÷61.
  • [31] Choudhary S., Singh M., Kale R. K.: Surfactant-catalyzed SiO2 thin films preparation and characterization. Journal of Adhesion Science and Technology 27 (2013) 2629÷2641.
  • [32] Dickerson J. H., Boccaccini A. R.: Electrophoretic deposition of nanoparticles. Springer (2012).
  • [33] Tada E., Frankel G. S.: Electrochemical behaviour of AISI 304SS with particulate silica coating in 0.1 M NaCl. Journal of the Electrochemical Society 154 (2007) 312÷317.
  • [34] Rabizadeh T., Allahkaram S. R.: Corrosion resistance enhancement of Ni–P electroless coatings by incorporation of nano-SiO2 particles. Materials & Design 32 (2011) 133÷138.
  • [35] Mashadi M., Mohammadijoo M., Honarkar A., Khorshidi Z. N.: Preparation of stable ZrB2–SiC–B4C aqueous suspension for composite based coating: Effect of solid content and dispersant on stability. Journal of Ceramics 9 (2014) 12÷18.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fddf13b9-98af-4966-9eba-e85bdea90f93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.