PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monte Carlo simulation of SiO2 nanoparticle-coated polymer optical fiber humidity sensor by ray tracing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A fiber optic device sensitive to humidity is detailed and modelled by ray tracing based on Monte Carlo simulation. The device is intended primarily for monitoring humidity in the microenvironment of wounds without removing the wound dressing and thus disturbing the wound-healing process. To produce the sensor, cladding is removed from a segment of its polymer-fiber and mesoporous SiO2 nanoparticles are deposited in the exposed zone. This introduces an additional light-transmission loss. The extent of such loss is related to the relative humidity of the environment. Such a relationship, embodying the essence of the sensor’s modulation principle, is examined in this paper by ray tracing based on Monte Carlo simulation. The sensor is explained in detail and its performance is characterised.
Słowa kluczowe
Czasopismo
Rocznik
Strony
281--288
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • Faculty of Science University of Kragujevac, Serbia
  • Faculty of Science University of Kragujevac, Serbia
  • Faculty of Science University of Kragujevac, Serbia
  • City University of Hong Kong, Hong Kong
Bibliografia
  • [1] YEO T.L., SUN T., GRATTAN K.T.V., Fibre-optic sensor technologies for humidity and moisture measurement, Sensors and Actuators A: Physical 144(2), 2008, pp. 280–295, DOI:10.1016/j.sna.2008.01.017.
  • [2] WIEDERHOLD P.R., Water Vapor Measurements: Methods and Instrumentation, CRC Press, 1997, DOI:10.1201/9781466551978.
  • [3] GRATTAN K.T.V., SUN T., Fibre optic sensor technology: an overview, Sensors and Actuators A: Physical 82(1–3), 2000, pp. 40–61, DOI:10.1016/S0924-4247(99)00368-4.
  • [4] GRATTAN L.S., MEGGITT B.T. [Eds.], Optical Fiber Sensor Technology, Volume 4: Chemical and Environmental Sensing, Springer Netherlands, 1999, DOI:10.1007/978-94-017-2484-5.
  • [5] ANEESH R., KHIJWANIA S.K., Zinc oxide nanoparticle based optical fiber humidity sensor having linear response throughout a large dynamic range, Applied Optics 50(27), 2011, pp. 5310–5314, DOI:10.1364/AO.50.005310.
  • [6] LUO Y., CHEN C., XIA K., PENG S., GUAN H., TANG J., LU H., YU J., ZHANG J., XIAO Y., CHEN Z., Tungsten disulfide (WS2) based all-fiber-optic humidity sensor, Optics Express 24(8), 2016, pp. 8956–8966, DOI:10.1364/OE.24.008956.
  • [7] ZHAO Z. DUAN Y., A low cost fiber-optic humidity sensor based on silica sol–gel film, Sensors and Actuators B: Chemical 160(1), 2011, pp. 1340–1345, DOI:10.1016/j.snb.2011.09.072.
  • [8] OTSUKI S., ADACHI K., Humidity dependence of visible absorption spectrum of gelatine films containing cobalt chloride, Journal of Applied Polymer Science 48(9), 1993, pp. 1557–1564, DOI:10.1002/app.1993.070480907.
  • [9] TAO S., WINSTEAD C.B., JINDAL R., SINGH J.P., Optical-fiber sensor using tailored porous sol–gel fiber core, IEEE Sensors Journal 4(3), 2004, pp. 322–328, DOI:10.1109/JSEN.2004.827274.
  • [10] WU Q., SEMENOVA Y., MATHEW J., WANG P., FARRELL G., Humidity sensor based on a single-mode hetero-core fiber structure, Optics Letters 36(10), 2011, pp. 1752–1754, DOI:10.1364/OL.36.001752.
  • [11] VILLATORO J., FINAZZI V., BADENES G., PRUNERI V., Highly sensitive sensors based on photonic crystal fiber modal interferometers, Journal of Sensors, Vol. 2009, 2009, article 747803, DOI:10.1155/2009/747803.
  • [12] LOPEZ-TORRES D., ELOSUA C., VILLATORO J., ZUBIA J., ROTHHARDT M., SCHUSTER K., ARREGUI F.J., Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor, Sensors and Actuators B: Chemical 242, 2017, pp. 1065–1072, DOI:10.1016/j.snb.2016.09.144.
  • [13] OTHONOS A., Bragg gratings in optical fibers: fundamentals and applications, [In] Optical Fiber Sensor Technology, [Eds.] Grattan K.T.V., Meggitt B.T., Springer, Boston, MA, 2000, DOI:10.1007/978-1-4757-6079-8_2.
  • [14] RAO Y.J., Recent progress in applications of in-fibre Bragg grating sensors, Optics and Lasers in Engineering 31(4), 1999, pp. 297–324, DOI:10.1016/S0143-8166(99)00025-1.
  • [15] JAMES S.W., TATAM R.P., Optical fibre long-period grating sensors: characteristics and application, Measurement Science and Technology 14(5), 2003, pp. R49–R61, DOI:10.1088/0957-0233/14/5/201.
  • [16] SUTAPUN B., TABIB-AZAR M., KAZEMI A., Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing, Sensors and Actuators B: Chemical 60(1), 1999, pp. 27–34, DOI:10.1016/S0925-4005(99)00240-3.
  • [17] HERNÁEZ M., ZAMARREÑO C.R., MATÍAS I.R., ARREGUI F.J., Optical fiber humidity sensor based on surface plasmon resonance in the infra-red region, Journal of Physics: Conference Series 178, 2009, article 012019, DOI:10.1088/1742-6596/178/1/012019.
  • [18] HERNÁEZ M., DEL VILLAR I., ZAMARREÑO C.R., ARREGUI F.J., MATIAS I.R., Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings, Applied Optics 49(20), 2010, pp. 3980–3985, DOI:10.1364/AO.49.003980.
  • [19] ASCORBE J., CORRES J.M., MATIAS I.R., ARREGUI F.J., High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances, Sensors and Actuators B: Chemical 233, 2016, pp. 7–16, DOI:10.1016/j.snb.2016.04.045.
  • [20] GOMEZ D., MORGAN S.P., HAYES-GILL B.R., GONCALVES CORREIA R., KORPOSH S., Polymeric optical fibre sensor coated by SiO2 nanoparticles for humidity sensing in the skin microenvironment, Sensors and Actuators B: Chemical 254, 2018, pp. 887–895, DOI:10.1016/j.snb.2017.07.191.
  • [21] DRLJACA B., SAVOVIC S., DJORDJEVICH A., Calculation of the frequency response and bandwidth in step-index plastic optical fibres using the time-dependent power flow equation, Physica Scripta 2012(T149), 2012, article 014028, DOI:10.1088/0031-8949/2012/T149/014028.
  • [22] SAVOVIC S., DJORDJEVICH A., SIMOVIC A., DRLJACA B., Influence of mode coupling on three, four and five spatially multiplexed channels in multimode step-index plastic optical fibers, Optics and Laser Technology 106, 2018, pp. 18–21, DOI:10.1016/j.optlastec.2018.03.015.
  • [23] SAVOVIC S., DRLJACA B., DJORDJEVICH A., Influence of launch-beam distribution on bandwidth in step-index plastic optical fibers, Applied Optics 52(6), 2013, pp. 1117–1121, DOI:10.1364/AO.52.001117.
  • [24] MATEO J., LOSADA M.A., ZUBIA J., Frequency response in step index plastic optical fibers obtained from the generalized power flow equation, Optics Express 17(4), 2009, pp. 2850–2860, DOI:10.1364/OE.17.002850.
  • [25] VIEGAS D., GOICOECHEA J., SANTOS J.L., MOITA ARAUJO F., FERREIRA L.A., ARREGUI F.J., MATIAS I.R., Sensitivity improvement of a humidity sensor based on silica nanospheres on a long-perios fiber grating, Sensors 9(1), 2009, pp. 519–527, DOI:10.3390/s90100519.
  • [26] KORPOSH S., JAMES S., TATAM R., LEE S.-W., Fibre-optic chemical sensor approaches based on nanoassembled thin films: a challenge to future sensor technology, [In] Current Developments in Optical Fiber Technology, [Eds.] Harun S.W., Arof H., IntechOpen, 2013, pp. 237–264, DOI:10.5772/53399.
  • [27] SMITH I.M., Programming in Fortran 90: A First Course for Engineers and Scientists, Wiley, 1995.
  • [28] KOVACEVIC M.S., NIKEZIC D., DJORDJEVICH A., Modeling of the loss and mode coupling due to an irregular core–cladding interface in step-index plastic optical fibers, Applied Optics 44(19), 2005, pp. 3898–3903, DOI:10.1364/AO.44.003898.
  • [29] KOVAČEVIĆ M., NIKEZIĆ D., DJORDJEVICH A., Monte Carlo simulation of curvature gauges by ray tracing, Measurement Science and Technology 15(9), 2004, pp. 1756–1761, DOI:10.1088/0957-0233/15/9/011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fddeb648-69b7-49d2-b2c2-81cfc8dbe7f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.