Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present research, an experimental investigation was conducted to assess the heat transfer coefficient of aqueous citric acid mixtures. The experimental facility provides conditions to assess the influence of various operating conditions such as the heat flux (0–190 kW/m2), mass flux (353–1059 kg/m2s) and the concentration of citric acid in water (10%–50% by volume) with a view to measure the subcooled flow boiling heat transfer coefficient of the mixture. The results showed that two main heat transfer mechanisms can be identified including the forced convective and nucleate boiling heat transfer. The onset point of nucleate boiling was also identified, which separates the forced convective heat transfer domain from the nucleate boiling region. The heat transfer coefficient was found to be higher in the nucleate boiling regime due to the presence of bubbles and their interaction. Also, the influence of heat flux on the heat transfer coefficient was more pronounced in the nucleate boiling heat transfer domain, which was also attributed to the increase in bubble size and rate of bubble formation. The obtained results were also compared with those theoretically obtained using the Chen type model and with some experimental data reported in the literature. Results were within a fair agreement of 22% against the Chen model and within 15% against the experimental data.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
193--217
Opis fizyczny
Bibliogr. 65 poz., rys., wykr., wz.
Twórcy
- School of Engineering, University of South Australia, Australia
autor
- School of Engineering, University of Yazd, Yazd, Iran
Bibliografia
- [1] Dhir V.: Boiling heat transfer. Annu. Rev. Fluid Mech. 30(1998), 365–401.
- [2] Stephan K., Abdelsalam M.: Heat-transfer correlations for natural convection boiling. Int. J. Heat Mass Tran. 23(1980), 73–87.
- [3] Liang G., Mudawar I.: textitReview of pool boiling enhancement with additives and nanofluids. Int.l J. Heat Mass Tran. 124(2018), 423–453.
- [4] Sarafraz M.: Experimental investigation on pool boiling heat transfer to formic acid, propanol and 2-butanol pure liquids under the atmospheric pressure. J. Appl. Fluid Mech. 6(2013), 1, 73–79.
- [5] Sarafraz M., Nikkhah V., Nakhjavani M., Arya A.: Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel. Appl. Therm. Eng. 123(2017), 29–39.
- [6] Sarafraz M., Peyghambarzadeh S., Alavifazel S.: Enhancement of nucleate pool boiling heat transfer to dilute binary mixtures using endothermic chemicalreactions around the smoothed horizontal cylinder. Heat Mass Transfer 48(2012), 1755–1765.
- [7] Das S.K., Putra N., Thiesen P., Roetzel W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125(2003), 567–5748.
- [8] Sarafraz M., Peyghambarzadeh S., Alavi Fazel S., Vaeli N.: Nucleate pool boiling heat transfer of binary nano mixtures under atmospheric pressure around a smooth horizontal cylinder. Period. Polytech. Chem. Eng. 57(2013), 1–2, 71–77.
- [9] Sarafraz M.M., Hormozi F.: Forced convective and nucleate flow boiling heat transfer to alumnia nanofluids. Period. Polytech. Chem. Eng. 58(2014), 37–4610.
- [10] Alavi Fazel S., Sarafraz M., Arabi Shamsabadi A., Peyghambarzadeh S.: Pool boiling heat transfer in diluted water. Heat Transfer Eng. 34(2013), 828–837.
- [11] Fazel S.A., Shamsabadi A.A., Sarafraz M., Peyghambarzadeh S.: Artificial boiling heat transfer in the free convection to carbonic acid solution. Exp. Therm. Fluid Sci. 35(2011), 645–652.
- [12] Sarafraz M., Fazel A.S., Hasanzadeh Y., Arabshamsabadi A., Bahram S.: Development of a new correlation for estimating pool boiling heat transfer coefficient of MEG/DEG/water ternary mixture. CICEQ 18(2012), 11–18.
- [13] Liu Z., Winterton R.: A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int. J. Heat Mass Tran. 34(1991), 2759–2766.
- [14] Del Valle V.H.., Kenning D.: Subcooled flow boiling at high heat flux. Int. J. Heat Mass Tran. 28(1985), 1907–1920.
- [15] Benjamin R., Balakrishnan A.: Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes. Int. J. Heat Mass Tran. 39(1996), 2495–2504.
- [16] Bennett D.L., Chen J.C.: Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. AIChE J. 26(1980), 454–461.
- [17] Sternling C., Tichacek L.: Heat transfer coefficients for boiling mixtures: Experimental data for binary mixtures of large relative volatility. Chem. Eng. Sci. 16(1961), 297–337.
- [18] Fazel S.A., Sarafraz M., Shamsabadi A.A., Peyghambarzadeh S.: Pool boiling heat transfer in diluted water/glycerol binary solutions. Heat Transfer Eng. 34(2013), 828–837.
- [19] Biglarian M., Gorji M.R., Pourmehran O., Domairry G.: H2O based different nanofluids with unsteady condition and an external magnetic field on permeable channel heat transfer. Int. J. Hydrogen Energ. 42(2017), 22005–22014.
- [20] Mohammadian M., Pourmehran O., Ju P.: An iterative approach to obtaining the nonlinear frequency of a conservative oscillator with strong nonlinearities. Int. Appl. Mech. 54(2018), 470–479.
- [21] Pourmehran O., Rahimi-Gorji M., Ganji D.D.: Analysis of nanofluid flow in a porous media rotating system between two permeable sheets considering thermophoretic and Brownian motion. Therm. Sci. 21(2017), 6B, 3063–3073.
- [22] Pourmehran O., Rahimi-Gorji M., Gorji-Bandpy M., Baou M.: Comparison between the volumetric flow rate and pressure distribution for different kinds of sliding thrust bearing. Propulsion Power Res. 4(2015), 84–90.
- [23] Pourmehran O., Sarafraz M., Rahimi-Gorji M., Ganji D.: Rheological behaviour of various metal-based nano-fluids between rotating discs: a new insight. J. Taiwan Inst. Chem. E. 88(2018), 7, 37–48.
- [24] Sarafraz M., Pourmehran O., Nikkhah V., Arya A.: Pool boiling heat transfer to zinc oxide-ethylene glycol nano-suspension near the critical heat flux. J. Mech. Sci. Technol. 32(2018) 2309–2315.
- [25] Tabassum R., Mehmood R., Pourmehran O., Akbar N., Gorji-Bandpy M.: Impact of viscosity variation on oblique flow of Cu–H2O nanofluid. In: Proc. Institution of Mechanical Engineers, Part E: J. Process Mech. Eng. 232(2018), 622–631.
- [26] Tavana M., Pourmehran O., Bandpy M.G., Sangarab J.A.: Numerical analysis of fluid flow and heat transfer in microchannels with various internal fins. IJAIM 3(2015), 4, 227–230.
- [27] Yousefi M., Pourmehran O., Gorji-Bandpy M., Inthavong K., Yeo L., Tu J.: CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization. Biomech. Model. Mechan. 16(2017), 2035–2050.
- [28] Chen J.C.:Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng. Chem. Process Des. Dev. 5(1966), 322–329.
- [29] Nakhjavani M., Nikkhah V., Sarafraz M., Shoja S., Sarafraz M.: Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour. Heat Mass Transfer 53(2017), 3201–3209.
- [30] Sarafraz M., Hormozi F., Peyghambarzadeh S., Vaeli N.: Upward flow boiling to DI-water and Cuo nanofluids inside the concentric annuli. J. Appl. Fluid Mech. 8(2015), 4, 651–659.
- [31] Sarafraz M., Hormozi F., Silakhori M., Peyghambarzadeh S.: On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition. Appl. Thermal Eng. 95(2016), 433–444.
- [32] Sarafraz M., Peyghambarzadeh S.: Influence of thermodynamic models on the prediction of pool boiling heat transfer coefficient of dilute binary mixtures. Int. Commun. Heat Mass 39(2012), 1303–1310.
- [33] Sarafraz M.M., Peyghambarzadeh S., Alavi F.S.: Experimental studies on nucleate pool boiling heat transfer to ethanol/MEG/DEG ternary mixture as a new coolant. CICEQ 18(2012), 577–586.
- [34] Racuciu M., Creanga D., Airinei A.: Citric-acid-coated magnetite nanoparticles for biological applications. Eur. Phys. J. E 21(2006), 117–121.
- [35] Nikkhah V., Sarafraz M., Hormozi F., Peyghambarzadeh S.: Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Exp. Therm. Fluid Sci. 60(2015), 83–95.
- [36] Peyghambarzadeh S., Sarafraz M., Vaeli N., Ameri E., Vatani A., Jamialahmadi M.: Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger. Ann. Nucl. Energ. 53(2013), 401–410.
- [37] Sarafraz M., Arya A., Nikkhah V., Hormozi F.: Thermal performance and viscosity of biologically produced silver/coconut oil nanofluids. Chem. Biochem. Eng. 30(2017), 489–500.
- [38] Sarafraz M., Hormozi F.: Scale formation and subcooled flow boiling heat transfer of CuO–water nanofluid inside the vertical annulus. Exp. Therm. Fluid Sci. 52(2014), 205–214.
- [39] Sarafraz M., Hormozi F.: Convective boiling and particulate fouling of stabilized CuO-ethylene glycol nanofluids inside the annular heat exchanger. Int. Commun. Heat Mass 53(2014), 116–123.
- [40] Sarafraz M., Hormozi F.: Comparatively experimental study on the boiling thermal performance of metal oxide and multi-walled carbon nanotube nanofluids. Powder Technol. 287(2016), 412–430.
- [41] Sarafraz M., Hormozi F., Kamalgharibi M.: Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids. Heat Mass Transfer 50(2014), 1237–1249.
- [42] Peyghambarzadeh S., Vatani A., Jamialahmadi M.: Application of asymptotic model for the prediction of fouling rate of calcium sulfate under subcooled flow boiling. Appl. Therm. Eng. 39(2012), 105–113.
- [43] Kline S., McClintock F.: Describing Uncertainties in Single Sample Experiments. Mech. Eng. 75(1953), 1, 3–8.
- [44] Sarafraz M., Arya A., Hormozi F., Nikkhah V.: On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: A comparative study. Appl. Therm. Eng. 112(2017), 1373–1381.
- [45] Sarafraz M., Arjomandi M.: Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: Experimental assessment of thermo-hydraulic performance of microchannel. Int. Commun. Heat Mass 94(2018), 39–46.
- [46] Sarafraz M., Arjomandi M.: Thermal performance analysis of a microchannel heat sink cooling with Copper Oxide-Indium (CuO/In) nano-suspensions at hightemperatures. Appl. Therm. Eng. 137(2018), 700–709.
- [47] Sarafraz M., Arya H., Arjomandi M.: Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J. Mol. Liq. 263(2018), 382–389.
- [48] Gungor K.E., Winterton R.: A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Tran. 29(1986), 3, 351–358.
- [49] Schroeder-Richter D., Bartsch G.: Analytical calculation of DNB-superheating by a postulated thermo-mechanical effect of nucleate boiling. Int. J. Multiphas. Flow 20(1994), 1143–1167.
- [50] Gnielinski V.: New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 16(1976), 359–368.
- [51] Bier K., Gorenflo D., Salem M., Tanes Y.: Pool boiling heat transfer and size of active nucleation centers for horizontal plates with different surface roughness. In: Proc. 6th Int. Heat Transfer Conf., 1978, 151–156, DOI: 10.1615/IHTC6.3730.
- [52] Gorenflo D., Sokol P., Caplanis S.: Pool boiling heat transfer from single plain tubes to various hydrocarbons. Int. J. Refrig. 13(1990), 286–292.
- [53] Sarafraz M., Peyghambarzadeh S.: Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vertical annulus. Exp. Therm. Fluid Sci. 50(2013), 154–162.
- [54] Sarafraz M.M.: Nucleate pool boiling of aqueous solution of citric acid on a smoothed horizontal cylinder. Heat Mass Transfer 48(2012), 611–619.
- [55] Peyghambarzadeh S., Jamialahmadi M., Alavi Fazel S., Azizi S.: Experimental and theoretical study of pool boiling heat transfer to amine solutions. Braz. J. Chem. Eng. 26(2009), 33–43.
- [56] Yu W., France D., Zhao W., Singh D., Smith R.: Subcooled flow boiling heat transfer to water and ethylene glycol/water mixtures in a bottom-heated tube. Exp. Heat Transfer 29(2016), 593–614.
- [57] Nikounezhad N., Nakhjavani M., Shirazi F.H.: Generation of cisplatin-resistant ovarian cancer cell lines. Iran. J. Pharma. Sci. 12(2016), 11–20.
- [58] Vakili N., Nakhjavani M., Mirzayi H., Shirazi F.: Studying silibinin effect on human endothelial and hepatocarcinoma cell lines. RPS 7(2012), 174.
- [59] Nikounezhad N., Nakhjavani M., Shirazi F.H.: Cellular glutathione level does not predict ovarian cancer cells’ resistance after initial or repeated exposure to cisplatin. J. Exp. Therap. Oncol. 2017, 12.
- [60] Shirazi F.H., Zarghi A., Kobarfard F., Zendehdel R., Nakhjavani M., Arfaiee S., Zebardast T., Mohebi S., Anjidani N., Ashtarinezhad A.: Remarks in successful cellular investigations for fighting breast cancer using novel synthetic compounds. In: Breast Cancer Focusing Tumor Microenvironment. Stem Cells and Metastasis (M. Gunduz, Ed.) Intech.Open, 2011, DOI: 10.5772/23005
- [61] Nakhjavani M., Stewart D.J., Shirazi F.H.: Effect of steroid and serum starvation on a human breast cancer adenocarcinoma cell line. J. Exp. Therap. Oncol. 2017, 12.
- [62] Arya H., Sarafraz M., Arjomandi M.: Pool boiling under the magnetic environment: experimental study on the role of magnetism in particulate fouling and bubbling of iron oxide/ethylene glycol nano-suspension. Heat Mass Transfer 55(2019), 119–132.
- [63] Arya H., Sarafraz M., Arjomandi M.: Heat transfer and fluid flow of MgO/ethylene glycol in a corrugated heat exchanger. J. Mech. Sci. Technol. 32(2018), 3975–3982.
- [64] Sarafraz M., Nikkhah V., Nakhjavani M., Arya A.: Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment. Exp. Therm. Fluid Sci. 91(2018), 509–519.
- [65] Sarafraz M., Shrestha E., Arya H., Arjomandi M.: Experimental thermal energy assessment of a liquid metal eutectic in a microchannel heat exchanger equipped with a (10Hz/50Hz) resonator. Appl. Therm. Eng. 148(2019), 2, 578–590.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fddd0281-1a18-4e9c-9ed8-9952241de905