PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Structural control of mass movements on slopes formed of magmatic and metamorphic rocks : the case study of Wielisławka Mt. (SW Poland, Sudetes Mts.)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We indicate the structural controls on, and provide an evolutionary model of, mass movements which developed on the slopes of a rhyolitic lava dome built of massive, sub-intrusive Permian rhyolites and its low-grade metamorphic cover, comprising Ordovician and Silurian sericite schists and metacherts (greenschist facies). The phenomena studied occur on the low-altitude, dome-like Wielisławka Mt. (370 m a.s.l.) in the Western Sudetes, SW Poland. A multidisciplinary approach involving geological and geomorphological fieldwork, LiDAR-based geomorphometric analyses, as well as analyses based on data obtained from terrestrial laser scanning (TLS), performed within old adits and shafts in the landslide area, have allowed determination of the origin and recent extent of the landslide phenomena. The geometry and development of the slip surface are closely linked with measured, existing discontinuities within the massif. As they enable observation of the initial stages of mass movement in the excavations within the cover rocks of the rhyolitic massif, the old adits and shafts are unique objects for the observation and reconstruction of landslide processes.
Rocznik
Strony
460--477
Opis fizyczny
Bibliogr. 87 poz., fot., mapka, rys.
Twórcy
  • University of Wrocław, Institute of Geological Sciences, Department of Structural Geology and Geological Mapping, Pl. M. Borna 9, 50-204 Wrocław, Poland
  • Polish Geological Institute – National Research Institute, Lower Silesian Branch, al. Jaworowa 19, 50–122 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Agliardi, F., Crosta, G.B., Meloni, F., Valle, C., Rivolta, C., 2013. Structurally-controlled instability, damage and slope failure in a porphyry rock mass. Tectonophysics, 605: 34-47.
  • 2. Avelar, A.S., Coelho Netto, A.L., Lacerda, W.A., Becker, L.B. Mendonça, M.B., 2011. Mechanisms of the recent catastrophic landslides in the mountainous range of Rio de Janeiro, Brazil. Proceedings of the Second World Landslide Forum - 3-7 October 2011, Rome.
  • 3. Awdankiewicz, M., Szczepara, N., 2009. Structure, textures, petrography and mineral chemistry of the Wielisławka rhyolites (Permian), the North-Sudetic Basin. Mineralogia - Special Papers, 34: 10.
  • 4. Bahat, D., 1991. Tectonofractography. Springer-Verlag, Berlin, Heidelberg.
  • 5. Baranowski, Z., 1975. Metamorphosed flysch deposits in the northern Kaczawa Mts. (Rzeszówek-Jakuszowa Unit). Geologia Sudetica, 10: 119-145.
  • 6. Baranowski, Z., Haydukiewicz, A., Kryza, R., Lorenc, S., Muszyński, A., Solecki, A., Urbanek Z., 1990. Outline of the geology of the Góry Kaczawskie (Sudetes, Poland). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 179: 223-257.
  • 7. Baroň, I., Kernstocková, M., Faridi, M., Bubík, M., Milovskýd, R., Melichar, R., Sabouri, J., Babůrek, J., 2013. Paleostress analysis of a gigantic gravitational mass movement in active tectonic setting: the Qoshadagh slope failure, Ahar, NW Iran. Tectonophysics, 605: 70-87.
  • 8. Berns, K., von Puttkamer, E., 2009. Simultaneous localization and mapping (SLAM). In: Autonomous Land Vehicles. Vieweg + Teubner, doi: doi.org/10.1007/978-3-8348-9334-5_6.
  • 9. Birk, A., Pfingsthorn, M., 2016. Simultaneous Localization and Mapping (SLAM). Wiley Encyclopedia of Electrical and Electronics Engineering, doi: 10.1002/047134608X.W8322.
  • 10. Carlini, M., Chelli, A., Vescovi, P., Artoni, A., Clemenzi, L., Tellini, C., Torelli, L., 2016. Tectonic control on the development and distribution of large landslides in the Northern Apennines (Italy). Geomorphology, 253: 425-437.
  • 11. Cedro, B., Mianowicz, K., Zawadzki, D., 2009. Ocena walorów geoturystycznych stanowisk pochodzenia wulkanicznego Gór i Pogórza Kaczawskiego (in Polish). In: Problemy turystyki i rekreacji (ed. M. Dudkowski). Oficyna In Plus, Szczecin, 2: 25-35.
  • 12. Chudek, M., Duży, S., 2005. Geotechniczne problemy utrzymania wyrobisk korytarzowych w złożonych warunkach geologiczno-górniczych (in Polish). Górnictwo i Geoinżynieria, 29: 157-164.
  • 13. Cymerman, Z., 2002. Structural and kinematic analysis and the Variscan tectonic evolution of the Kaczawa Complex (the Sudetes) (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 175: 1-143.
  • 14. Daneshvar, M.R.M., Bagherzadeh, A., 2011. Landslide hazard zonation assessment using GIS analysis at Golmakan Watershed, northeast of Iran. Frontiers of Earth Science, 5: 70-81.
  • 15. Dewez, T.J.B., Plat, E., Degas, M., Richard, T., Pannet, P., Thuon, Y., Meire, B., Watelet, J.-M., Laurent Cauvin, L., Lucas, J., Dian, G., 2016. Handheld Mobile Laser Scanners Zeb-1 and Zeb-Revo to map an underground quarry and its above-ground surroundings. Virtual Geoscience Conference, 22-23 Sept. 2016, Bergen, Norway.
  • 16. Dikau, R., Brunsden, D., Schrott, L., Ibsen, M.L. eds., 1996. Landslide Recognition. Identification, Movement and Causes. J. Willey and Sons.
  • 17. Duszyński, F., Jancewicz, K., Kasprzak, M., Migoń, P., 2017. The role of landslides in downslope transport of caprock-derived boulders in sedimentary tablelands, Stołowe Mts, SW Poland. Geomorphology, 295: 84-101.
  • 18. Eyre, M., Wetherelt, A., Coggan, J., 2016. Evaluation of automated underground mapping solutions for mining and civil engineering applications. Journal of Applied Remote Sensing, 10: 046011.
  • 19. Fleming, R.W., Johnson, A.M., 1989. Structures associated with strike-slip faults that bound landslide elements. Engineering Geology, 27: 39-114.
  • 20. Fort, M, Cossart, E., Deline, P., Dzikowski, M., Nicoud, G., Ravanel, L., Schoeneich, P., Wassmer, P., 2009. Geomorphic impacts of large and rapid mass movements: a review. Géomorphologie: Relief, Processus, Environnement, 15: 47-64.
  • 21. Frąckiewicz, W., 1958. Szczegółowa Mapa Geologiczna Sudetów 1:25 000, arkusz Świerzawa (in Polish). Wyd. Geol., Warszawa.
  • 22. Herrera, G., Mateos, R.M., García-Davalillo, J.C., Grandjean, G., Poyiadji, E., Maftei, R., Filipciuc, T-C., Auflič, M.J., Jež, J., Podolszki, L., Trigila, A., ladanza, C., Raetzo, H., Kociu, A., Przyłucka, M., Kułak, M., Sheehy, M., Pellicer, X.M., McKeown, C., Ryan, G., Kopačková, V., Frei, M., Kuhn, D., Hermanns, R.L., Koulermou, N., Smith, C.A., Engdahl, M., Buxó, P., Gonzalez, M., Dashwood, C., Reeves, H., Cigna, F., Liščák, P., Pauditš, P., Mikulėnas, V., Demir, V., Raha, M., Quental, L., Sandić, C., Fusi, B., Jensen, O.A., 2018. Landslide databases in the Geological Surveys of Europe. Landslides, 15: 359-379.
  • 23. Humair, F., Pedrazzini, A., Epard, J-L., Froese, C.R., Jaboyedoff, M., 2013. Structural characterization of Turtle Mountain anticline (Alberta, Canada) and impact on rock slope failure. Tectonophysics, 605: 133-148.
  • 24. Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes classification of landslide types, an update. Landslides, 11: 167-194.
  • 25. Jaboyedoff, M., Oppikofer, T., Derron, M.H., Blikra, L.H., Böhme M., Saintot, A., 2011. Complex landslide behaviour and structural control: a three-dimensional conceptual model of Cknesrockslide, Norway. Geological Society London Special Publications, 351: 147-161.
  • 26. Jahn, A., 1960. Czwartorzęd Sudetów (in Polish). In: Regionalna geologia Polski, t. III, Sudety (ed. H. Teisseyre): 358-418. PTGeol. Kraków.
  • 27. Jancewicz, K., Traczyk, A., 2017. Little known mass movement forms in the Węglówka valley, Bardzkie Mts (Sudetes) (in Polish with English summary). Przyroda Sudetów, 20: 289-314.
  • 28. Jerzmański, J., 1956. Porfir wzgórza Wielisławka w Górach Kaczawskich (in Polish). Przegląd Geologiczny, 4: 174-175.
  • 29. Kasprzak, M., Duszyński, F., Jancewicz, K., Michniewicz, A., Różycka, M., Migoń, P., 2016. The Rogowiec Landslide Complex (Central Sudetes, SW Poland) - a case of collapsed mountain. Geological Quarterly, 60 (3): 695-713.
  • 30. Kojima, S., Nagata, H., Yamashiroya, S., Iwamoto, N., Ohtani, T., 2015. Large deep-seated landslides controlled by geologic structures: prehistoric and modern examples in a Jurassic subduction - accretion complex on the Kii Peninsula, central Japan. Engineering Geology, 186: 44-56.
  • 31. Kondracki, J., 2002. Geografia regionalna Polski (in Polish). PWN, Warszawa.
  • 32. Kong, Z., Lu, Q., 2017. A brief review of simultaneous localization and mapping. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, doi: 10.1109/IEC0N.2017.8216955.
  • 33. Kowalski, A., 2017a. Impact of mass movements on geological interpretation - an example of the Drogosz hill landslide within the Zawory Range (Central Sudetes) (in Polish with English summary). Przegląd Geologiczny, 65: 96-104.
  • 34. Kowalski, A., 2017b. Distribution and orígin of landslide forms in the Bóbr river valley near Wleń (Western Sudetes) (in Polish with English summary). Przegląd Geologiczny, 65: 629-641.
  • 35. Kowalski, A., Wojewoda, J., 2017. Newly recognised landslide forms in the Kaczawa river valley (Kaczawskie Foothills, Western Sudetes) (in Polish with English summary). Landform Analysis, 34: 15-27.
  • 36. Kowalski, A., Makoś, M., Pitura, M., 2018. New insights into the glacial history of southwestern Poland based on large-scale glaciotectonic deformat ions - a case study from the Czaple II Gravel Pit (Western Sudetes). Annales Societatis Geologorum Poloniae, 88: 341-359.
  • 37. Kowalski, A., Makoś, M., 2019. Geologiczne uwarunkowania rozwoju osuwisk w Sudetach (in Polish). 2. Ogólnopolska Konferencja Osuwiskowa O!SUWISKO, 14.05.2019-17.05.2019, Szczawnica: Materiały Konferencyjne. Państwowy Instytut Geologiczny, Warszawa.
  • 38. Kozłowski, S., Parachoniak, W., 1967. Wulkanizm permski w depresji północnosudeckiej (in Polish). Prace Muzeum Ziemi 11, Warszawa: 191-221.
  • 39. Kryza, R., Muszyński, A., 1992. Pre-Variscan volcanic-sedimentary succession of the central southern Góry Kaczawskie, SW Poland: outline geology. Annales Societatis Geologorum Poloniae, 62: 117-140.
  • 40. Książkiewicz, M., 1972. Karpaty. In: Budowa geologiczna Polski, t. IV, Tektonika (in Polish). Polskie Towarzystwo Geologiczne, Kraków.
  • 41. Lindner, H., 1939. Die Gnadenfelder saaleelszeltllche Endstaffel und die Bewegung des Saale-Eises in Oberschlesien. Jahresberichte der Geologischen Vereinigung Oberschlesiens, 1939: 1-19.
  • 42. Maciejak, K., Kowalski, A., Maciejak, M., 2017. Goldmines of the Wielisławka hill (Kaczawa Upland) (in Polish with English summary). Hereditas Minariorum, 4: 45-63.
  • 43. Mancini, F., Ceppi, C., Ritrovato, G., 2010. GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Natural Hazards and Earth System Sciences, 10: 1851-1864.
  • 44. Margielewski, W., 2006. Structural control and types of movements of rock mass in anisotropic rocks: case studies in the Polish Flysch Carpathians. Geomorphology, 77: 47-68.
  • 45. Margielewski, W., Urban, J., 2017. Gravitationally induced non-karst caves: tectonic and morphological constrains, classification, and dating; Polish Flysch Carpathians case study. Geomorphology, 296: 160-181.
  • 46. Migoń, P., Jancewicz, K., Kasprzak, M., 2014. The extent of landslide-affected areas in the Kamienne Mountains (Middle Sudetes) - a comparison of geological maps and a LiDAR based digital elevation model (in Polish with English summary). Przegląd Geologiczny, 62: 463-471.
  • 47. Migoń, P., Różycka, M., Jancewicz, K., 2016a. The landslide complex on Mt. Toczek (Bystrzyckie Mts) in the light of geomorphometric analysis (in Polish with English summary). Przyroda Sudetów, 19: 167-188.
  • 48. Migoń, P., Jancewicz, K., Różycka, M., Duszyński, F., Kasprzak, M., 2016b. Large-scale slope remodelling by landslides - geomorphic diversity and geological controls, Kamienne Mts., Central Europe. Geomorphology, 289: 134-151.
  • 49. Migoń, P., Duszyński, F., Kasprzak, M., Różycka, M., 2017. Evolving slope instability zone at. Mt. Turzyna (Sudetes, SW Poland) - an example of incipient deep-seated gravitational slope deformation. Zeitschrift für Geomorphologie, 61/2: 135-148.
  • 50. Mikulski, S.Z., 2007. The late Variscan gold mineralization in the Kaczawa Mountains, Western Sudetes. Polish Geological Institute Special Papers, 22: 1-162.
  • 51. Mikulski, S.Z., Williams, I.S., 2014. Zircon U-Pb dating of igneous rocks in the Radzimowice and Wielisław Złotoryjski auriferous polymetallic deposits, Sudetes, SW Poland. Annales Societatis Geologorum Poloniae, 84: 213-233.
  • 52. Milewicz, J., Kozdrój, W., 1995. Szczegółowa Mapa Geologiczna Sudetów 1:25 000 arkusz Proboszczów (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 53. Neuendorf, K.K.E., Mehl Jr., J.P., Jackson, J.A., 2005. Glossary of Geology. 5th Ed. American Geological Institute, Alexandria, Virginia.
  • 54. Nocerino, E., Menna, F., Remondino, F., Toschi, I., Rodríguez-Gonzálvez, P., 2017. Investigation of Indoor and Outdoor Performance of Two Portable Mobile Mapping Systems. Proc. SPIE 10332, Videometrics, Range Imaging, and Applications XIV, 103320I, DOI: doi.org/10.1117/12.2270761.
  • 55. Petit, J.P., 1987. Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9: 597-608.
  • 56. Petrakov, D.A., Chernomorets, S.S., Evans, S.G., Tutubalina, O.V., 2008. Catastrophic glacial multi-phase mass movements: a special type of glacial hazard. Advances in Geosciences, 14: 211-218.
  • 57. Poprawa, D., Raczkowski, W., 2003. Carpathian landslides (southern Poland) (in Polish with English summary). Przegląd Geologiczny, 51: 685-692.
  • 58. Report, 2011. Raport dostawy, ISOK - Informatyczny System Osłony Kraju przed nadzwyczajnymi zagrożeniami (in Polish). Część nr 3, Etap nr 03, 2011-09-12.
  • 59. Reynolds, O., 1885. On the dilatancy of media composed of rigid particles in contact, with rocks: case studies in the Polish Flysch Carpathians. Geomorphology, 77: 47-68.
  • 60. Romagós, D.R., Ridao, P., Neira, J., 2010. Simultaneous Localization and Mapping. In: Underwater SLAM for Structured Environments Using an Imaging Sonar, Springer Berlin Heidelberg.
  • 61. Różycka, M., Michniewicz, A., Migoń, P., Kasprzak, M., 2015. Identification and morphometric properties of landslides in the Bystrzyckie Mountains (Sudetes, SW Poland) based on data derived from airborne LiDAR. Geomorphometry for Geosciences, 1: 247-250.
  • 62. Sammartano, G., Spanb, A., 2018. Point Clouds by SLAM-based Mobile Mapping Systems: Accuracy and Geometric Content Validation in Multisenson Survey and Stand-alone Acquisition. Applied Geomatics, Springer Berlin Heidelberg doi: doi.org/10.1007/s12518-018-0221 -7.
  • 63. Sassa, K., Tiwari, B., Liu, K.-F., McSaveney, M., Strom, A., Setiawan, H. eds., 2018. Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools, Volume 2: Testing, Risk Management and Country Practices, Springer International Publishing.
  • 64. Scheidegger, A.E., 1998. Tectonic predesign of mass movements, with examples from the Chinese Himalaya. Geomorphology, 26: 37-46.
  • 65. Schleier, M., Hermanns, R.L., Krieger, I., Oppikofer, T., Eiken, T., Rrnning, J.S., Rohn, J., 2016. Gravitational reactivation of a pre-existing post-Caledonian fault system: the deep-seated gravitational slope deformation at Middagstinden, western Norway. Norwegian Journal of Geology, 96: 1-23.
  • 66. Schroder, J.F., 2014. Landslide Hazards, Risks, and Disasters. Academic Press.
  • 67. Sikora, R., Wojciechowski, T., 2019. Landslides in the Sudetes (in Polish with English summary). Przegląd Geologiczny, 67: 360-368.
  • 68. Śliwiński, W., Raczyński, P., Wojewoda, J., 2003. Sedymentacja utworów epiwaryscyjskiej pokrywy osadowej w basenie północnosudeckim (in Polish). In: Sudety Zachodnie: od wendu do czwartorzędu (eds. A. Ciężkowski, J. Wojewoda and A. Żelaźniewicz): 1-8. WIND, Wrocław.
  • 69. Solecki, A.T., 1994. Tectonics of the North Sudetic Synclinorium. Acta Universitatis Wratislaviensis nr 1618, Prace Geologiczno Mineralogiczne, 45.
  • 70. Stoffel, M., Huggel, C., 2012. Effects of climate change on mass movements in mountain environments. Progress in Physical Geography, 36: 421-439.
  • 71. Synowiec, G., 2003. Landslides in the Kamienne Mts, Sudetes (SW Poland) (in Polish with English summary). Przegląd Geologiczny, 51: 59-65.
  • 72. Synowiec, G., 2005. Formy i procesy osuwiskowe w Górach Kamiennych (in Polish). Ph.D. thesis, Instytut Geografii i Rozwoju Regionalnego, Uniwersytet Wrocławski.
  • 73. Teisseyre, H., Smulikowski, K., Oberc, J., 1957. Regionalna geologia Polski t. III, Sudety, z. 1 (in Polish). Polskie Towarzystwo Geologiczne, Kraków.
  • 74. Traczyk, A., 2011. Morfologia i geneza przełomowego odcinka doliny Kaczawy między Sędziszową a Nowym Kościołem na Pogórzu Kaczawskim (in Polish). Przyroda Sudetów, 14: 167-180.
  • 75. Tucci, G., Visintini, D., Bonora, V., Parisi, E.I., 2018. Examination of indoor mobile mapping systems in a diversified internal/external test field. Applied Sciences, 8: 401.
  • 76. Urbanek, Z., Baranowski, Z., Haydukiewicz, A., 1975. Geologiczne konsekwencje występowania dewońskich konodontów w metamorfiku północnej części Gór Kaczawskich. Geologia Sudetica, 10: 155-169.
  • 77. Varnes, D.J., 1978. Slope movement types and processes. In: Landslides: Analysis and Control (eds. R.L Schuster and R.J. Krizek): 11-35. Transportation and Road Research Board, National. Academy of Science, Washington D.C.
  • 78. Wajs, J., Kasza, D., Zagożdżon, P.P., Zagożdżon, K.D., 2018. 3D modeling of underground objects with the use of SLAM technology on the example of historical mine in Ciechanowice (Ołowiane Range, The Sudetes). E3S Web of Conferences, 29, 00024, https://doi.org/10.1051 /e3sconf/20182900024.
  • 79. Werner, M., 2014. Simultaneous Localization and Mapping in Buildings. In: Indoor Location-Based Services, Springer, doi: 10.1007/978-3-319-10699-1_8.
  • 80. Wójcik, A., Wojciechowski, T., 2016. Landslides as one of the most important elements of geological hazards in Poland (in Polish with English summary). Przegląd Geologiczny, 64: 701-709.
  • 81. Wojewoda, J., Mastalerz, K., 1989. Climate evolution, allo- and autocyclicity of sedimentation: an example from the Permo-Carboniferous continental deposits of the Sudetes, SW Poland (in Polish with English summary). Przegląd Geologiczny, 432: 173-180.
  • 82. Woldstedt, P., 1932. Über Endmoränen und Oser der Saale (= Riss) Vereisung in Schlesien. Zeitschrift für Deutschen Geologischen Gesselschaften, 84: 78-84.
  • 83. WP/WLI, 1990. The International Geotechnical Societes UNESCO Working Party for World Landslide Inventory. A suggested method for reporting a landslide. Bulletin International Association of Engineering Geology 41: 5-12.
  • 84. WP/WLI, 1993. The International Geotechnical Societes UNESCO Working Party for World Landslide Inventory. Multilingual landslide glossary. The Canadian Geotechnical Society. BiTech Publishers Ltd, Richmond BC, Canada: 1-7.
  • 85. Záruba, Q., Mencl, V., 1982. Landslides and Their Control. Elsevier Scientific Pub. Co.
  • 86. Zimmermann, E., Kühn, B., 1929. Geologische Karte von Preussen 1:25 000. Blatt Schönau. Preuβische Geologische Landesanstalt.
  • 87. Zöller, A., 1936. Die Putzenzech am Willenberg. Ein altes Goldbergwerk bei Röversdorf unweit.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdd5b523-853a-49f9-8fe0-382418f6b325
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.