Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Every bone implant to work correctly after implantation needs to integrate with the surrounding bone. To enhance such a process, called osseointegration, various techniques of implant surface modification emerged. One of the approaches is based on the deposition of nano- and submicron materials on the implant surface. This paper presents a solution blow spinning process for producing poly-L-lactic acid (PLLA)/ceramic fibrous composites designed to be deposited directly onto orthopaedic implants prior to implantation to increase osseointegration. We produced plain PLLA fibrous materials for comparison, and fibrous composite materials with 𝛽-tricalcium phosphate (𝛽TCP), hydroxyapatite nanoparticles (nHAp) and hydroxyapatite nanoparticles modified with lecithin (nHAp-LE). We performed the structural analysis of produced materials with scanning electron microscopy, gravimetric determination of porosity, and water contact angle measurement. We also used infrared spectroscopy, Alizarin Red S staining, and cytotoxicity evaluation to conclude that PLLA/nHAp-LE composite material shows the most promising properties to be applied as surface modification of bone implants. To visualise fibrous composite deposition on implants, we used two models: titanium plate and stainlesssteel bolt. Thus, we showed that the solution blow spun materials can be used for surface modification of orthopaedic implants.
Czasopismo
Rocznik
Tom
Strony
275--–289
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
- Warsaw University of Technology, Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
Bibliografia
- 1. Abdal-hay A., Hamdy A.S., Khalil K.A., Lim J.H., 2015. A novel simple one-step air jet spinning approach for deposition of poly(vinyl acetate)/hydroxyapatite composite nanofibers on Ti implants. Mater. Sci. Eng., C, 49, 681–690. DOI: 10.1016/j.msec.2015.01.008.
- 2. Abdal-hay A., Hasan A., Yu-Kyoung, Lee M.-H., Hamdy A. S., Khalil K.A., 2016. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant. Mater. Sci. Eng., C, 58, 1232–1241. DOI: 10.1016/j.msec.2015.09.065.
- 3. Abdal-hay A., Sheikh F.A., Lim J.K., 2013. Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocompos ite membrane mats for bone tissue engineering. Colloids Surf., B, 102, 635–643. DOI: 10.1016/j.colsurfb.2012. 09.017.
- 4. Balakrishnan H., Hassan A., Imran M., Wahit M.U., 2012. Toughening of polylactic acid nanocomposites: A short review. Polymer-Plastics Technol. Eng., 51, 175–192. DOI: 10.1080/03602559.2011.618329.
- 5. Behrens A.M., Casey B.J., Sikorski M.J., Wu K.L., Tutak W., Sandler A.D., Kofinas P., 2014. In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Lett., 3, 249–254. DOI: 10.1021/mz500049x.
- 6. Bonan R.F., Mota M.F., da Costa Farias R.M., Silva S.D., Bonan P.R.F., Diesel L., Menezes R.R., da Cruz Perez D.E., 2019. In vitro antimicrobial and anticancer properties of TiO2 blow-spun nanofibers containing silver nanoparticles. Mater. Sci. Eng., C, 104, 109876. DOI: 10.1016/j.msec.2019.109876.
- 7. Carlsson L., Röstlund T., Albrektsson B., Albrektsson T., Brånemark P.-I., 1986. Osseointegration of titanium implants. Acta Orthop. Scand., 57, 285–289. DOI: 10.3109/17453678608994393.
- 8. Civantos A., Martínez-Campos E., Ramos V., Elvira C., Gallardo A., Abarrategi A., 2017. Titanium coatings and surface modifications: Toward clinically useful bioactive implants. ACS Biomater. Sci. Eng., 3, 1245–1261. DOI: 10.1021/acsbiomaterials.6b00604.
- 9. Costa R.G.F., Brichi G.S., Ribeiro C., Mattoso L.H.C., 2016. Nanocomposite fibers of poly(lactic acid)/titanium dioxide prepared by solution blow spinning. Polym. Bull., 73, 2973–2985. DOI: 10.1007/s00289-016-1635-1.
- 10. Daristotle J.L., Behrens A.M., Sandler A.D. Kofinas P., 2016. A review of the fundamental principles and applica tions of solution blow spinning. ACS Appl. Mater. Interfaces, 8, 34951–34963. DOI: 10.1021/acsami.6b12994.
- 11. Deneff J.I., Walton K.S., 2019. Production of metal-organic framework-bearing polystyrene fibers by solution blow spinning. Chem. Eng. Sci., 203, 220–227. DOI: 10.1016/j.ces.2019.03.012.
- 12. Ferreira T.P.M., Nepomuceno N.C., Medeiros E.L.G., Medeiros E.S., Sampaio F.C., Oliveira J.E., Oliveira M.P., Galvão L.S., Bulhões E.O., Santos A.S.F., 2019. Antimicrobial coatings based on poly(dimethyl siloxane) and silver nanoparticles by solution blow spraying. Prog. Org. Coat., 133, 19–26. DOI: 10.1016/j.porgcoat.2019.04.032.
- 13. François S., Chakfé N., Durand B., Laroche G., 2009. A poly(l-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses. Acta Biomater., 5, 2418–2428. DOI: 10.1016/j.actbio.2009.03.013.
- 14. Gregory C.A., Gunn W.G., Peister A., Prockop D.J., 2004. An Alizarin red-based assay of mineralisation by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal. Biochem., 329, 77–84. DOI: 10.1016/j.ab.2004.02.002.
- 15. Huang Y., Song J., Yang C., Long Y., Wu H., 2019. Scalable manufacturing and applications of nanofibers. Mater. Today, 28, 98–113. DOI: 10.1016/j.mattod.2019.04.018.
- 16. Jang J.-H., Castano O., Kim H.-W., 2009. Electrospun materials as potential platforms for bone tissue engineering. Adv. Drug Delivery Rev., 61, 1065–1083. DOI: 10.1016/j.addr.2009.07.008.
- 17. Kopeć K., Wojasiński M., Ciach T., 2020. Superhydrophilic polyurethane/polydopamine nanofibrous materials en hancing cell adhesion for application in tissue engineering. Int. J. Mol. Sci., 21, 6798. DOI: 10.3390/ijms21186798.
- 18. Latocha J., Wojasiński M., Jurczak K., Gierlotka S., Sobieszuk P., Ciach T., 2018. Precipitation of hydroxyapatite nanoparticles in 3D-printed reactors. Chem. Eng. Process. Process Intensif., 133, 221–233. DOI: 10.1016/j.cep. 2018.10.001.
- 19. Lewis R.J., Sr (Ed.), 1997. Hawley’s Condensed chemical dictionary. 13th edition. John Wiley & Sons, Inc., New York, NY, p. 88. Li J.P., Habibovic P., van den Doel M., Wilson C.E., de Wijn J.R., van Blitterswijk C.A., de Groot K., 2007. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 28, 2810–2820. DOI: 10.1016/j.biomaterials.2007.02.020.
- 20. McEvoy G.K. (Ed.), 1992. American hospital formulary service – Drug information 92. American Society of Hospital Pharmacists, Inc., Bethesda, MD (Plus Supplements 1992), 276.
- 21. Medeiros E.L.G., Gomes D.S., Santos A.M.C., Vieira R.H., de Lima I.L., Rocha F.S., de S. Castro-Filice L., Medeiros E.S., Neves G.A., Menezes R.R., 2021. 3D nanofibrous bioactive glass scaffolds produced by one-step spinning process. Ceram. Int., 47, 102–110. DOI: 10.1016/j.ceramint.2020.08.112.
- 22. Medeiros E.S., Glenn G.M., Klamczynski A.P., Orts W.J., Mattoso L.H.C., 2009. Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci. 113, 2322–2330. DOI: 10.1002/app.30275.
- 23. Ravichandran R., Ng C.C., Liao S., Pliszka D., Raghunath M., Ramakrishna S., Chan C.K., 2012. Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomed. Mater., 7, 015001. DOI: 10.1088/1748-6041/7/1/015001.
- 24. Reneker D.H., Yarin A.L., 2008. Electrospinning jets and polymer nanofibers. Polymer, 49, 2387–2425. DOI: 10. 1016/j.polymer.2008.02.002.
- 25. Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B., 2017. Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater. Sci. Eng., C, 78, 1246–1262. DOI: 10.1016/j.msec.2017. 05.017.
- 26. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., 2012. Fiji: an open source platform for biological-image analysis. Nat. Methods, 9, 676–682. DOI: 10.1038/nmeth.2019.
- 27. Sharma B., Elisseeff J.H., 2004. Engineering structurally organised cartilage and bone tissues. Ann. Biomed. Eng., 32, 148–159. DOI: 10.1023/b:abme.0000007799.60142.78.
- 28. Tammaro L., Vittoria V., Wyrwa R., Weisser J., Beer B., Thein S., Schnabelrauch M., 2014. Fabrication and characterisation of electrospun polylactide/𝛽-tricalcium phosphate hybrid meshes for potential applications in hard tissue repair. BioNanoMaterials, 15, 9–20. DOI: 10.1515/bnm-2014-0001.
- 29. Tomecka E., Wojasinski M., Jastrzebska E., Chudy M., Ciach T., Brzozka Z., 2017. Poly(L-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Mater. Sci. Eng., C, 75, 305–316. DOI: 10.1016/j.msec.2017.02.055.
- 30. Tutak W., Sarkar S., Lin-Gibson S., Farooque T.M., Jyotsnendu G., Wang D., Kohn J., Bolikal D., Simon C.G., 2013. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials, 34, 2389–2398. DOI: 10.1016/j.biomaterials.2012.12.020.
- 31. Wojasiński M., Pilarek M., Ciach T., 2014. Comparative studies of electrospinning and solution blow spinning processes for the production of nanofibrous poly(L-lactic acid) materials for biomedical engineering. Pol. J. Chem. Technol., 16, 43–50. DOI: 10.2478/pjct-2014-0028.
- 32. Zhang L., Kopperstad P., West M., Hedin N., Fong H., 2009. Generation of polymer ultrafine fibers through solution (air-) blowing. J. Appl. Polym. Sci., 114, 3479–3486. DOI: 10.1002/app.30938
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdd35cb2-b1db-49cf-ac03-d2ef6e7e3eb6