PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of thermo-chemical treatment and grinding process of external cylindrical surfaces on residual stresses in 13CrMo4-5 steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose This paper presents a study aimed at determining the effect of the carburizing treatment process and the subsequent grinding process on the residual stresses occurring in ring-shaped specimens made of 13CrMo4-5 steel. Design/methodology/approach During the tests, vacuum carburizing was used, achieving an effective case depth ECD = 0.5 mm. Subsequently, the cylindrical outer surfaces of the samples were ground by conventional plunge grinding and with innovative kinematics using a test stand based on a conventional flat-surface grinding machine. As part of the study, microhardness and residual stresses were measured before and after grinding. Measurements were carried out to a depth of 1 mm. The main component of the stand is an original special device that allows the cylindrical specimen to be clamped. Then the angle between its axis of rotation and the axis of rotation of the grinding wheel is set with respect to the plane of the grinding machine’s magnetic table. In the described tests, the axis of rotation of the cylindrical specimen was deviated from its original position by 15° and set at an angle of 75° to the axis of rotation of the grinding wheel. The specimens were ground with a grinding wheel of noble electro-corundum marked 38A60K8V. In both kinematic cases of the grinding process, a machining allowance of 0.01 mm was removed. Findings Grinding using innovative kinematics did not cause any significant changes in the microhardness distribution, either for vacuum or conventional carburizing. In addition, residual stress measurements using the Dawidenkov-Sachs method showed that innovative grinding enables a more favourable distribution than those obtained after conventional plunge grinding. Research limitations/implications Further research will focus on, among others, selecting the angular settings of the workpiece axes relative to the grinding wheel axes depending on their dimensions. Grinding guidelines should include coverage ratio, infeed value, grinding time, and peripheral speeds. In addition, the plan for future research includes measuring the components of the grinding force and the geometric structure of the surface. Practical implications Grinding process is a crucial stage of steel treatment in almost every industrial branch. In sustainable manufacturing, it is extremely important to produce high-quality items while reducing the cost of manufacturing and taking care of the environment and workers’ health. Originality/value The proposed test stand, together with the authors’ device, makes it possible to conduct machining of the external surfaces of cylindrical workpieces on a flat surface grinder. In this case, the innovation of the grinding process consists of the non-parallel alignment of the cylindrical rotational axis of the specimen and the rotational axis of the grinding wheel with respect to the plane of the magnetic grinding table.
Rocznik
Strony
10--21
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • The Jacob of Paradies University, ul. Chopina 52, 66-400 Gorzów Wielkopolski, Poland
autor
  • Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-537 Łódź, Poland
Bibliografia
  • [1] J. Zhang, G.C. Wang, H.J. Pei, Effects of grinding parameters on residual stress of 42CrMo steel surface layer in grind-hardening, in: Proceedings of the International Symposium on Mechanical Engineering and Material Science (ISMEMS 2017), Atlantis Press, 2017, 42-45. DOI: https://doi.org/10.2991/ismems-17.2018.10
  • [2] L.X. Hung, V.N. Pi, T.T. Hong, L.H. Ky, V.T. Lien, L.A. Tung, B.T. Long, Multi-objective optimization of dressing parameters of internal cylindrical grinding for 9CrSi alloy steel using Taguchi method and Grey Relational Analysis, Materials Today: Proceedings 18/7 (2019) 2257-2264. DOI: https://doi.org/10.1016/j.matpr.2019.07.007
  • [3] J. Sawicki, K. Krupanek, W. Stachurski, V. Buzalski, Algorithm scheme to simulate the distortions during gas quenching in a single-piece flow technology, Coatings 10/7 (2020) 694. DOI: https://doi.org/10.3390/coatings10070694
  • [4] M. Korecki, E. Wołowiec-Korecka, M. Sut, A. Brewka, W. Stachurski, P. Zgórniak, Precision case hardening by low pressure carburizing (LPC) for high volume production, HTM Journal of Heat Treatment and Materials 72/3 (2017) 175-183. DOI: https://doi.org/10.3139/105.110325
  • [5] B.W. Kruszyński, Z. Gawroński, J. Sawicki, P. Zgórniak, Enhancement of gears fatigue properties by modern thermo-chemical treatment and griding processes, Mechanics and Mechanical Engineering 12/4 (2008) 389-397.
  • [6] E. Wołowiec-Korecka, M. Korecki, W. Stachurski, P. Zgórniak, J. Sawicki, A. Brewka, M. Sut, M. Bazel, System of single-piece flow case hardening for high volume production, Archives of Materials Science and Engineering 79/1 (2016) 37-44. DOI: https://doi.org/10.5604/18972764.1227661
  • [7] T. Burakowski, Areology. Theoretical basics. Scientific Publishing House of the Institute of Exploitation Technology‒ PIB, Radom, 2013 (in Polish).
  • [8] I.D. Marinescu, M.P. Hitchiner, E. Uhlmann, W.B. Rowe, I. Inasaki, Handbook of machining with grinding wheels, Second edition, CRC Press, Boca Raton, 2016.
  • [9] P. Koshy, Y. Zhou, C. Guo, R. Chand, S. Malkin, Novel kinematics for cylindrical grinding of brittle materials, CIRP Annals 54/1 (2005) 289-292. DOI: https://doi.org/10.1016/S0007-8506(07)60105-X
  • [10] B.W. Kruszyński, R. Wójcik, Residual stress in grinding, Journal of Materials Processing Technology 109/3 (2001) 254-257. DOI: https://doi.org/10.1016/S0924-0136(00)00807-4
  • [11] W.B. Rowe, Principles of modern grinding technology, Second edition, William Andrew, Norwich, 2014. DOI: https://doi.org/10.1016/C2013-0-06952-6
  • [12] E. Kohls, C. Heinzel, M. Eich, Evaluation of hardness and residual stress changes of AISI 4140 steel due to thermal load during surface grinding, Journal of Manufacturing and Materials Processing 5/3 (2021) 73. DOI: https://doi.org/10.3390/jmmp5030073
  • [13] J. Sawicki, B. Kruszyński, R. Wójcik, The influence of grinding conditions on the distribution of residual stress in the surface layer of 17CrNi6-6 steel after carburizing, Advances in Science and Technology Research Journal 11/2 (2017) 17-22. DOI: https://doi.org/10.12913/22998624/67671
  • [14] H.X. Tu, G. Jun, B.T. Hien, L.X. Hung, L.A. Tung, V.N. Pi, Determining optimum parameters of cutting fluid in external grinding of 9CrSi steel using Taguchi technique, SSRG International Journal of Mechanical Engineering 5/6 (2018) 1-5. DOI: https://doi.org/10.14445/23488360/IJME-V5I6P101
  • [15] K. Kishore, M.K. Sinha, A. Singh, Archana, M.K. Gupta, M.E. Korkmaz, A comprehensive review on the grinding process: Advancements, applications and challenges, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236/22 (2022) 10923-10952. DOI: https://doi.org/10.1177/09544062221110782
  • [16] W. Stachurski, J. Sawicki, B. Januszewicz, R. Rosik, The influence of the depth of grinding on the conditio of the surface layer of 20MnCr5 steel ground with the minimum quantity lubrication (MQL) method, Materials 15/4 (2022) 1336. DOI: https://doi.org/10.3390/ma15041336
  • [17] W. Stachurski, K. Krupanek, B. Januszewicz, R. Rosik, R. Wójcik, An effect of grinding on microhardness and residual stress in 20MnCr5 following single-piece flow low-pressure carburizing, Journal of Machine Engineering 18/4 (2018) 73-85. DOI: https://doi.org/10.5604/01.3001.0012.7634
  • [18] A.S. Awale, M. Vashista, M.Z.K. Yusufzai, Multi-objective optimization of MQL mist parameters for eco-friendly grinding, Journal of Manufacturing Processes 56/A (2020) 75-86. DOI: https://doi.org/10.1016/j.jmapro.2020.04.069
  • [19] W. Stachurski, J. Sawicki, K. Krupanek, K. Nadolny, Application of numerical simulation to determine ability of air used in MQL method to clean grinding wheel active surface during sharpening of hob cutters, International Journal of Precision Engineering and Manufacturing-Green Technology 8 (2021) 1095-1112. DOI: https://doi.org/10.1007/s40684-020-00239-x
  • [20] J.C. Lopes, M.V. Garcia, M. Valentim, L.R. Javaroni, F.S.F. Ribeiro, L.E. De Angelo Sanchez, H.J. De Mello, P.R. Aguiar, E.C. Bianchi, Grinding performance using variants of the MQL technique: MQL with cooled air and MQL simultaneous to the wheel cleaning jet, International Journal of Advanced Manufacturing Technology 105 (2019) 4429-4442. DOI: https://doi.org/10.1007/s00170-019-04574-5
  • [21] M.I.H. Tusar, P.B. Zaman, M. Mia, S. Saha, N.R. Dhar, Influence of grinding parameters on surface roughness and temperature under carbon nanotube assisted MQL, Advances in Materials and Processing Technologies 9/1 (2023) 92-115. DOI: https://doi.org/10.1080/2374068X.2022.2085954
  • [22] W. Stachurski, R. Dębkowski, R. Rosik, R. Święcik, W. Pawłowski, Evaluation of the influence of the cooling method used during grinding on the operating properties of ceramic grinding wheels made with different abrasives, Advances in Science and Technology Research Journal 17/3 (2023) 1-18. DOI: https://doi.org/10.12913/22998624/162389
  • [23] B.S. Abrão, M.F. Pereira, L.R.R. Da Silva, Á.R. Machado, R.V. Gelamo, F.M.C. De Freitas, M. Mia, R.B. Da Silva, Improvements of the MQL cooling-lubrication condition by the addition of multilayer graphene platelets in peripheral grinding of SAE 52100 steel, Lubricants 9/8 (2021) 79. DOI: https://doi.org/10.3390/lubricants9080079
  • [24] W. Stachurski, J. Sawicki, R. Wójcik, K. Nadolny, Influence of application of hybrid MQL-CCA method of applying coolant during hob cutter sharpening on cutting blade surface condition, Journal of Cleaner Production 171 (2018) 892-910. DOI: https://doi.org/10.1016/j.jclepro.2017.10.059
  • [25] K. Nadolny, S. Kieraś, P. Sutowski, Modern approach to delivery coolants, lubricants and antiadhesives in the environmentally friendly grinding processes, International Journal of Precision Engineering and Manufacturing-Green Technology 8 (2021) 639-663. DOI: https://doi.org/10.1007/s40684-020-00270-y
  • [26] B. Zieliński, K. Nadolny, W. Zawadka, T. Chaciński, W. Stachurski, G.F. Batalha, Effect of pro-ecological cooling and lubrication methods on the sharpening process of planar blades used in food processing, Materials 15/21 (2022) 7842. DOI: https://doi.org/10.3390/ma15217842
  • [27] Y. Shao, O. Fergani, Z. Ding, B. Li, S.Y. Liang, Experimental investigation of residual stress in minimum quantity lubrication grinding of AISI 1018 steel, Journal of Manufacturing Science and Engineering 138/1 (2016) 011009. DOI: https://doi.org/10.1115/1.4029956
  • [28] K. Nadolny, S. Kieraś, Experimental studies on the centrifugal MQL-CCA method of applying coolant during the internal cylindrical grinding process, Materials 13/10 (2020) 2383. DOI: https://doi.org/10.3390/ma13102383
  • [29] Y. Shao, O. Fergani, B. Li, S.Y. Liang, Residual stress modelling in minimum quantity lubrication grinding, International Journal of Advance Manufacturing Technology 83 (2016) 743-751. DOI: https://doi.org/10.1007/s00170-015-7527-y
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdd351f2-6a97-4088-b79a-680ace303d82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.