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ABSTRACT  

The fully-incompressible, viscous and stationary Navier–Stokes equations are solved for the 

laminar flow over an obstacle placed on the lower of a channel. The Reynolds number is varied from 

100 to 400. In all cases studied the flow field proves to be steady. Several distinct flow features are 

identified: a horseshoe vortex system, inward bending flow at the side walls of the obstacle, a 

horizontal vortex at the downstream lower-half of the obstacle and a downstream wake containing 

two counter-rotating vortices. The shape and size of these flow features are mainly dominated by the 

Reynolds number. For higher Reynolds numbers, both the horseshoe vortex and the wake region 

extend over a significantly larger area. The correlation of the position of the separation and 

attachment point with the Reynolds number has been calculated. A detailed analysis is carried out to 

investigate flow pattern and Nusselt number. 
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1.  INTRODUCTION 

 

Flow separation in internal flows caused by the presence of a wall-mounted obstacle is 

of particular relevance to numerous practical engineering applications, due to the associated 

influence of the pressure loss, heat and mass transfer. Computational research of flow over 

two-dimensional obstacle mainly focuses on high Reynolds numbers, e.g. [1-7]. For gaseous 

fluids these studies are typically applicable for large scale objects in low-speed 

(incompressible) flow. Bilen and Yapici [1] carried out experimental investigations on the 

effect of orientation angle and geometrical position of wall mounted rectangular blocks. Their 

results indicated that the most efficient parameters were the Reynolds number and orientation 

angle. The maximum heat transfer rate was obtained at 450 °C orientation angle value. Ghia 

and Davis [2] applied conformal transformations to present solutions to  the flow past a semi-

infinite obstacle. Young and Vafai [3] investigated the forced convective heat transfer of 

individual and array of multiple two-dimensional obstacles for a Reynolds number ranging 

from 800 to 1300. The effect of a change in the channel height and input heat power was 

investigated and an empirical correlation established. In another study, Wang and Vafai [4] 
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studied the mixed convection and pressure losses in a channel with discrete flush-mounted 

and protruding heat sources. In the same work, the effect of obstacle geometry and flow rate 

was considered. An empirical correlation for both pressure drop and Nusselt number was 

presented. Gareh [5] studied a laminar flow with an obstacle placed on the lower walls. He 

found that whenever Reynold increases the area tourbillions increases. 

The present work represents a two-dimensional numerical investigation of forced 

laminar convection in a rectangular channel containing obstacle placed in lower wall. 

 

 

2.  MATHEMATICAL FORMULATION 

 

Two-dimensional flow around a surface mounted obstacle can be described by means 

of the classical continuity, momentum and convection diffusion equations. 

To achieve the calculations, these equations and the corresponding boundary conditions 

are made dimensionless. The characteristic scales  

 At the inlet section,      p0 = ρ u0
2
 

 The non-dimensional number.  

 

   
   
 

 

        
 

 
 

and the non-dimensional quantities  

 

u* = u/u0,  v* = v/v0,  p* = p/ρ*u0
2
 

 

Are used for that purpose. Therefore, the governing equations in non-dimensional form 

can be written as:  

Continuity: 

 

0*v.*                               

X-momentum: 

















































2

2

2

2

*

*

*

*

Re

1

*

*

*

*
*

*

*
*

Y

U

X

U

X

P

Y

U
V

X

U
U

 

Y-momentum: 

















































2

2

2

2

*

*

*

*

.Re

1

*

*

*

*
*

*

*
*

Y

V

X

V

Y

P

Y

V
V

X

V
U      

 

(1) 

(2) 

(3) 



International Letters of Chemistry, Physics and Astronomy 19(2) (2014) 111-119 

-113- 

Energy:  
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The applied boundary conditions expressed in the dimensionless form are: 

Inflow  

u = 1, v = 0, T = 0 

Non-slip wall 

y = 0 : u = v = 0 

T = 0 

y = 1: u = v = 0 

T = 0 

Obstacle  

u = v = 0, T = 1 

Outflow  

∂u/∂x = 0,   ∂v/∂x = 0,   ∂T/∂x = 0,   ∂p/∂x = 0 

 

 

 

 

 

 

 

 

Figure 1. Computational domain. 

 

 

3.   NUMERICAL SOLUTION    

 

In the numerical solution of the Navier–Stokes and energy equations, Eqs.(1)–(4), 

obtained by integrating over an element cell volume. The staggered type of control volume 

for the x- and y-velocity components was used, while the other variables of interest were 

computed at the grid nodes. The discretized forms of the governing equations were 

numerically solved by the SIMPLE algorithm of Patankar [8-10].  

(4) 
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Numerical solutions were obtained iteratively by the TDMA method. Numerical 

calculations were performed by writing a computer program in MATLAB 7.1. The 

convergence criterion was assumed to have been achieved when the values of residual terms 

in the momentum and energy equations did not exceed 10
-3

. As the result of grid tests for 

obtaining the grid-independent solution, an optimum grid of 41 x 41 is determined in the x 

and y directions, respectively. Another hand, we are based in this paper on the Code of the 

Gareh [10]. 

 

 

4.  RESULTS  AND  DISCUSSION          

4. 1. Dynamical study 

The dimensionless parameters to be considered and which characterize the flow field 

and heat transfer are as follows: The Reynolds number based on channel height is taken equal 

to 100, 200,300 and 400, the obstacle dimensions (h,w) and the obstacle stream wise spacing 

(L) are taken as h = 0.5, w = h/2 and L = 1. 

Local Nusselt number defined by the local temperature gradient at the wall: 
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The average Nusselt number is defined by 
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The dimensionless parameters that must be specified and which characterize the flow 

field and heat transfer are the Reynolds number the obstacles dimensions, h, wands baseline 

configuration (h = w = 0.5). For the effect of obstacles dimensions. By considering the 

evolution of the flow and thermal fields in the range of Reynolds number from 100 to 400, it 

was found that the transition from steady to unsteady flow occurs at low Reynolds number 

when compared to the channel with no obstacle on the lower wall. 

The vortex in inter-obstacle groove is seen to be the most affected. The fluid flow then 

interacts more with the obstacle faces as illustrated by Figure 1a which shows the streamlines 

for Re=100 and for a baseline configuration h  = w = 0.5. It is observed that the flow tends to 

enter in-between obstacle cavities.  

For higher values of the Reynolds number (Figure 1b and c), the flow becomes 

unsteady periodic and the length of the recirculation zone seems to get reduced when 

compared with the configuration without obstacle on the upper wall. Besides, the 

recirculation zone behind the last obstacle is more pronounced. In the transition from steady 

to unsteady periodic flows, a wave is induced by vortex shedding behind the last obstacle. 

This wave results in a change of the reticulating zone behind the latter. 
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Figure 1. Streamlines for three values of Reynolds number: (a) Re = 100, (b) Re = 200, (c) Re = 400. 
 

 

4. 2. Thermal study 
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Figure 2. Isotherms contours at steady state for different Reynolds number: (a) Re = 100, (b) Re = 

200, (c) Re = 400. 
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The representation of the isotherm contours obtained for different values of the 

Reynolds number is shown in Figure 2. It is observed that the isotherm lines are denser close 

to the upstream and the top faces of the obstacles. Furthermore, the isotherm contours near 

the downstream face of the obstacles are denser than those obtained in channels without 

obstacle on the upper wall. It is also observed that when the Reynolds number increases, a 

vortex appears inside the inter-obstacle cavities and the isotherm contours become thoroughly 

denser especially near the faces. This yields to the removal of higher quantities of energy 

from both the right and the left obstacle faces. 

Figure 3. Represents the Nusselt number obtained of the obstacle but for values of the 

Reynolds number equal to 100, 200,300 and 400. As expected, it can be clearly observed that 

values of the Nusselt number become higher with increasing values in the Reynolds number. 

The Nusselt numbers curve for the left face of the obstacle present a local maximum in the 

face distance. It is believed that such a phenomenon is the result of flow redirection toward 

the opposite wall by the obstacle. The value of the Nusselt number at the right face of the 

obstacle is nearly constant and has always a positive value. 
 

 

 

 

 

 

 

          

 

 
 

 

Figure 3. Evolution of the Nusselt number along obstacle peripheral distance for different Reynolds 

number Re = 100, 200, 300 and 400. 
 

 

4.  CONCLUSION  

   

The study first showed that when an obstacle is added on the lower wall of the channel, 

the transition from steady to unsteady flow is obtained at lower values of the Reynolds 

number. The various isotherms and Nusselt number curves were presented. The results 

obtained showed that as the value of the Reynolds number was increased, the heat removed 

from the obstacles increased sensibly with a maximum heat removal around the obstacle 

corners. However, vortex shedding generated by the obstacle on the lower wall can 
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additionally enhance heat transfer along the obstacle surfaces. The wavy flow significantively 

changes the reticulating zone behind the last obstacle. 
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