PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface Integrity Evaluation on Aluminium-Epoxy Composite in Machining using Taguchi Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increasing needs of using aluminum epoxy composite as a replacement to solid metal rapid prototyping has opened to interests in optimizing its machining processes. This paper reported on the success of optimizing the surface roughness of aluminium epoxy composite using milling process along with a new finding on the best combination parameters. Taguchi method was used as the optimization method whereas spindle speed, feed rate, and depth of cut were set as input factors using an L9 Orthogonal Array. Analysis of Variance was used to identify the significant factors influencing the surface roughness. Experiment was conducted in dry condition using a vertical milling machine and the surface roughness after the machining was evaluated. Optimum combination of cutting parameters was identified after the finest surface roughness (response) based on the signal-to-noise ratio calculated. Cutting parameters selected after preliminary testing are cutting speeds of (2000, 3000 and 4000) rpm, feed rate (300, 400 and 500) mm/min, and cutting depth (0.15, 0.20, and 0.25) mm. The result showed that cutting speed had the largest percentage contribution to surface roughness with 69% and the second highest contribution was feed rate with 22% and depth of cut at 9%. The spindle speed was found as the most significant factor influencing the quality of surface roughness. The result is significant particularly in providing important guidelines for industries in selecting the right combination of parameters as well as to be cautious with the most significant factor affecting the milling process of metal epoxy composite.
Twórcy
  • Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  • Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
autor
  • Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  • Universiti Malaysia Perlis, Faculty of Chemical Engineering Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  • Universiti Malaysia Perlis, Faculty of Chemical Engineering Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  • Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  • Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
  • Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
  • [1] M.T.M. Khushairi, S. Sharif, K.R. Jamaludin, A.S. Mohruni, International Journal on Advanced Science, Engineering and Information Technology 7 (4), 1155 (2017).
  • [2] R. Hussin, S. Sharif, M. Nabiałek, S.Z.A. Rahim, M.T.M. Khushairi, M.A. Suhaimi, M.M.A.B. Abdullah, M.H.M. Hanid, J.J. Wysłocki, K. Błoch, Materials 14 (3), 665 (2021).
  • [3] M. Mia, Measurement 121, 249-260 (2018).
  • [4] A. Chaudhary, V. Saluja, International Research Journal of Engineering and Technology 4 (8), 82-89 (2017).
  • [5] M.S. Mahendra, B. Sibin, Measurement, 1-5 (2016).
  • [6] K.K. Jha, R. Badathala, Low Temperature Thermal Energy Storage (TES) System for Improving Automotive HVAC Effectiveness, Technical Papers - SAE International, (2015).
  • [7] J. Ribeiro, H. Lopes, L. Queijo, D. Figueiredo, Periodica Polytechnica Mechanical Engineering 61 (1), 30-35 (2017).
  • [8] P.J. Ross, Taguchi techniques for quality engineering. (2nd Ed.). McGraw-Hill, New York (1996).
  • [9] Y. Wu, A. Wu, Taguchi methods for robust design. The American Society of Mechanical Engineers, New York (2000).
  • [10] S. Moshat, S. Datta, A. Bandyopadhyay, P.K. Pal, International Journal of Engineering, Science and Technology 2 (1), 92-102 (2010).
  • [11] L.M. Maiyar, R. Ramanujam, K. Venkatesana, J. Jerald, Procedia Engineering 64, 1276-1282 (2013).
  • [12] M. Nalbant, H. Gökkaya, G. Sur, Materials & Design. 28 (4), 1379-1385 (2007).
  • [13] N.K. Verma, A.S. Sikarwar, International Research Journal of Engineering and Technology 2 (6), 307-312 (2015).
  • [14] A. Hasçahk, U. Çaydas, International Journal of Advanced Manufacturing Technology 38 (9), 896-903, 2008.
  • [15] T. Kivak, Measurement 50, 19-28 (2014).
  • [16] J.Z. Zhang, J.C. Chen, E.D. Kirby, Journal of Materials Processing Technology 184 (1-3), 233-239 (2007).
  • [17] C. Gologlu, N. Sakarya, Journal of Materials Processing Technology 206 (1-3), 7-15 (2008).
  • [18] A.M. Titu, A.V. Sandu, A.B. Pop, S. Titu, T.C. Ciungu, IOP Conference Series: Materials Science and Engineering 374 (1), 012054 (2018).
  • [19] J. Ribeiro, H. Lopes, L. Queijo, D. Figueiredo, Periodica Polytechnica Mechanical Engineering 61 (1), 30-35 (2017).
  • [20] M. Fathullah, Z. Shayfull, N.A. Shuaib, S.M. Nasir, A. Manan, International Review of Mechanical Engineering 5 (7), 1278-1286 (2011).
  • [21] J.W. Zhou, Y. Chen, Y.C. Fu, J.H. Xu, A.D. Hu, S.Q. Liu, Advanced Materials Research 1027, 76-79 (2014).
  • [22] E. Nas, B. Öztürk, Materials Testing 60 (5), 519-525 (2018).
  • [23] M.V. Vardhan, G. Sankaraiah, M. Yohan, H. Jeevan Rao, Materials Today: Proceedings 4 (8), 9163-9169 (2017).
  • [24] W. Mersni, M. Boujelbene, S. Ben Salem, A.S. Alghamdi, Procedia Manufacturing 20, 271-276 (2018).
  • [25] A.M. Țîțu, A.V. Sandu, A.B. Pop, S. Țîțu, D.N. Frățilă, C. Ceocea, A. Boroiu, Applied Sciences 10 (19) 6951 (2020).
  • [26] B. Bawono, P.W. Anggoro, A.P. Bayuseno, J. Jamari, M. Tauviqirrahman, Journal of Industrial and Production Engineering 36 (4), 237-247 (2019).
  • [27] M.F. Kahraman, H. Bilge, S. Öztürk, Materials Testing 61 (5), 477-483 (2019).
  • [28] R. Sundaramoorthy, R. Ravindran, SN Applied Sciences 1 (9), 1093 (2019).
  • [29] M. Kumar, R. Bhuvanesh, K. Parameshwaran, K. Deepandurai, S.M. Senthil, Transactions of the Indian Institute of Metals 73 (5), 1171-1183 (2020).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdcba966-5647-4335-b007-b4e714befa65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.