AM Journal of Applied Mathematics and Computational Mechanics 2016, 15(2), 127-136

www.amem.pez.pl p-ISSN 2299-9965
C M DOI: 10.17512/jamem.2016.2.14 e-ISSN 2353-0588

THE STURM-LIOUVILLE EIGENVALUE PROBLEM -
A NUMERICAL SOLUTION USING THE CONTROL VOLUME
METHOD

Jarostaw Siedlecki’, Mariusz Ciesielskiz, Tomasz Blaszczyk’

!Institute of Mathematics, Czestochowa University of Technology
Czestochowa, Poland
’Institute of Computer and Information Sciences
Czestochowa University of Technology, Czestochowa, Poland
Jjaroslaw.siedlecki@im.pcz.pl, mariusz.ciesielski@jicis.pcz.pl, tomasz.blaszczyk@im.pcz.pl

Abstract. The solution of the 1D Sturm-Liouville problem using the Control Volume
Method is discussed. The second order linear differential equation with homogeneous
boundary conditions is discretized and converted to the system of linear algebraic
equations. The matrix associated with this system is tridiagonal and eigenvalues of this
system are an approximation of the real eigenvalues of the boundary value problem. The
numerical results of the eigenvalues for various cases and the experimental rate of conver-
gence are presented.
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1. Introduction

This paper is concerned with the computation of eigenvalues of regular eigen-
value problems occurring in ordinary differential equations. The Sturm-Liouville
problem arises within in many areas of science, engineering and applied mathemat-
ics. It has been studied for more than two decades. Many physical, biological and
chemical processes are described using models based on the Sturm-Liouville equa-
tions.

The Sturm-Liouville problem appears directly as the eigenvalue problem in
a one-dimensional space. It also arises when linear partial differential equations are
separable in a certain coordinate system. For a more detailed study of the integer
order Sturm-Liouville theory, we refer the reader to [1-5].

The Sturm-Liouville problem can be solved by using either analytical or numer-
ical methods. One of the most common approaches to a numerical solution of the
considered problem is the finite difference method [3, 6-8] where each derivative is
discretized at each grid point with an adequate difference scheme. Apart from the
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finite difference method, several analytical ones, such as the variational or decom-
position methods, are proposed to find an approximate solution.

2. Statement of the problem

We consider the following problem defined on the bounded interval x € [a, 5]

L2 g0 (5 (219 0
ocly(a) + (xzy'(a) =0

2
By (5) + Buy'(5) =0 @

where p(x) > 0, dp/dx and g(x) are continuous, w(x) > 0 on [a, 5], oz1| + |oc2| #0 and

IB,|+|B,|#0. The above problem is called the regular Sturm-Liouville Problem

(SLP). The solution to SLP consists of a pair A and y, where A is a constant - called
an eigenvalue, while y is a nontrivial (nonzero) function - called an eigenfunction,
and together they satisfy the given SLP. For each SLP, the eigenvalues form an
infinite increasing sequence: A; < A, < A3 < ... and limy_,,,A; = .

For arbitrary choices of the functions p(x), g(x) and w(x) in Eq. (1), the compu-
tation of the exact values of the eigenvalues for which SLP (1)-(2) has a nontrivial
eigensolution y(x) which is very complicated or it is practically impossible to
determine. Numerical methods should, therefore, be used for computing the
approximate values of A. In many cases, the importance of a numerical approxima-
tion to the SLP described by a differential eigenvalue problem is to reduce the
problem to that of solving the eigenvalue problem of a matrix equation (an algebra-
ic problem).

In this paper, we apply the Control Volume Method (also known as the Finite
Volume Method) to compute the eigenvalues of the Sturm-Liouville problem
numerically.

3. Control Volume Method

In this numerical method [9] the considered domain of SLP: x € [a, 5] is divid-
ed into N control volumes Q; for i = 1,...,N with the central nodes &;. The mesh is
presented in Figure 1. The auxiliary nodes x; = a + i Ax, for i = 0,...,N and Ax =
= (b —a)/ N have also been introduced. Then, the positions of central nodes are the
following: &, =a+ (i — 0.5)Ax, i=1,...,N.
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Fig. 1. Mesh of control volumes

—Ii[p(x)dyd( )jdV+_[q(x)y(x )av = XJ y(x)av (3)

a dx
or written in the form (assuming that Q;: [x;.;, x;])
—Ii[p(x)dy( )jdx+ J.q(x)y(x dx XJ. x)dx (@))]

M dx d

Xi-1

All the components in Eq. (4) can be approximated as follows:

]q () ()= 4(2,) (&) Ax )
[ )y (x) = (&) (&) A ©)
e S e |
2E) 1) fori>1 2&)-2(E) fori<N (7)
=p(n | ep(x)]
o —y(él)_y” fori=1 | —yb_y(gN) fori=N
0.5Ax 0.5Ax

The values of y, = y(a) and y;, = y(b) are determined on the basis of approxima-
tions of the boundary conditions (2)

y(&l ) —Va (E;N)
yo, 2L Te g, =0 8
a‘lya (X2 05 ‘ B BZ 0 5 ( )
and hence, these values are equal to
2a, 2B,
—— % 9
Va 2, 0, ({31) Vb = 26, + B, (&N) )
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Substituting (9) into (8), the following approximation of (7) has been obtained

} i(ﬁ(x)dy—(x)jdx = _M{y(i, )-»(&,.,), fori>1

! dx dx Ax yay(él)a fOI‘ l =1

H (10)
+M{y(£—’l+l)_y(&_‘,), fori< N
Ax [ =1,0(&x)s fori=N

where
4q 4B
"2 e e T R A 1
T e e T T g A (n

For example, in the case of the Dirichlet boundary conditions at boundaries x = a
(i.e. oy =1, 0p = 0) and/or x = b (i.e. B; = 1, B, = 0), the coefficients y, and y, are
equal to 2, and in the case of the Neumann boundary conditions at x = a (a; = 0,
o, = 1) and/or x =56 (B; = 0, B, = 1), these coefficients take the values of 0, respec-
tively.

After substitution of (5), (6) and (10) into (4), the following system of the
discrete equations for every control volume:
e for Q):

PO ey )r(E) ()

L)) ) -2

(Ax)

o forQ, fori=2,...N—1:

p(s) pl)+p(x) | rlx)
i) [ L ()Jy(a) )
=1r(2)(2)

e for Qy:

_Iigv)-;)y<afv_l)+[ybp(”£g)f ) +q(aN)Jy<aN)=xw<aN)y<éN) 14

is obtained.
This system can be also written in the matrix form as

(P+Q)y =AWy (15)
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where
W
) T ) o 0
P(xkl)
P:(ALY ° “rla) +p(x) () 0 (16)
0 0 —-p (foz) i(;[\z;) ) —-p (fol)
’ o0 e D
Q:diag(‘](é)aCI(éz)v'HCI(&N)) (17)
W =diag(w(&,).w(&,)....w(&y)) (18)

and y =[J’(§1)>y(§2),---,Y(§N )]T Then, SLP (1)-(2) is equivalent to the matrix
eigenvalue problem (15). The ordered eigenvalues of (15) are denoted by A",
i=1,..N.

In order to evaluate eigenvalues of large matrix eigenvalue problem (15), the
numerical methods implemented in mathematical software can be used.

3.1. Particular case

Assuming the functions p(x) = 1, g(x) = 0 and w(x) = 1 in the SLP problem, then
matrices P, Q and W are reduced to the following forms: Q = O (Zero matrix),
W =1 (Identity matrix) and

y,+1 -1 0 0 - 0
-1 2 -1 0
1 0 -1 2 -1 0
P= > . . . (19)
(Ax) : . :
-1 2 -1
0 e 00 =1y, +1
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In the case of the mixed Dirichlet and/or Neumann boundary conditions at both
boundaries, one can find in literature (e.g. [4]) the explicit formulas for the i-th
eigenvalue A; of the SLP (1)-(2) and they are presented in Table 1. For the discrete
case, the eigenvalues of the matrix P can be determined in an analytical way. The
eigenvalue problems of tridiagonal matrices (in a similar form as the matrix P) are
considered in [10, 11]. On the basis of these results, the eigenvalues of the matrix
P: ", i =1,...,N are adopted to the analysed problem for four mixed boundary
conditions and they are also given in Table 1.

Table 1
Eigenvalues of Eq. (1) for functions p(x) =1, ¢(x) =0 and w(x) =1
and four mixed cases of boundary conditions
(explicit formulas for A;, i = 1,...,00 and discrete one for A, i= 1,...,N)
The Dirichlet B.C. atx =5 The Neumann B.C. atx =5
v, =2 (forB,=1,3,=0) ¥, =0(forB,=0,B,=1)
The Dirichlet B.C. . 2 . 2
sx=a x,=( ) o _[=05)m
b-a ' b-a
Ya=2 m_ AN i 2 -
(for o, = 1. A, _(b—a)2 sin N MN) _ AN zsinz((l O.S)RJ
0 =0) (b-a) 2N
The Neumann . 2 . 2
B.C.atx=a A = w A = (l_l)n
' b—a ! b—a
Ya=0 4N> (i—OS)Tc 2 .
(foro, =0, | 3@ — sin? : w _ AN? L ((i-Dm
— i 2 N A = = sin
a=1) (b-a) (b-a) 2N

For more complicated cases such as non-constant functions p(x), g(x), w(x)
occurring in Eq. (1), the eigenvalues of system (15) should be determined in
a numerical way (i.e. using mathematical software - here the Maple is used).

3.2. Error of numerical approximation of the eigenvalues

Theorem 1. For the Sturm-Liouville problem (1)-(2) there exists a constant C such
that the i-th exact eigenvalue ), and the approximate eigenvalue A, satisfy the fol-
lowing relation

%, -2V C(ax) i =O((Ax)' '), Ax=(b=a)/N, i=1..N (20)

Proof: For the presented formulas in Table 1 (in these cases, the exact and discrete
eigenvalues are known), one can estimate the error of approximation of the discrete
eigenvalues. Let us start from the Taylor series expansion for the function sin’(x) at
about point x =0
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1 n+l 22n 1.2n
Sll'l2 (.X') Zl)z—n)' (21)

Next, if we take into account the first two terms in the Taylor series (21), then we
estimate the following expression as

w (_1)"+1 22n—1x2n

2 (2n)!

1 4

‘x2 —sin® (x)‘ = < =3% (22)

n=1

For the case of the Dirichlet-Dirichlet boundary conditions, the error is evaluat-
ed by using the estimation (22) in the following way:

R L g L U
b-a) (b-a) 2N (b-a) 2N 2N o)
(2N) (ﬂy S S N SN TP
3(b—a)y’\2N) 12(b-a)’ N* 12(b-a)’

In the other cases (from Table 1), the results are similar.

Another method of error estimation is based on the investigation of the Experi-
mental Rate of Convergence (ERC). The total error in the estimate of the eigenval-
ues is composed of both the error resulting from the discretization of the equation
and the error of the numerical algorithm for finding eigenvalues of system (15).
Here, we assume that the error is

r, =2V =0((Ax)i"). Ax=(b-a)/N, i=1..N (24)

where the parameters » and s are to be determined experimentally.
If the i-th exact eigenvalue A to SLP is known, then the parameters » and s can
be determined using the following formulas for the ERC for variable values of N:

7\’(2\//2)

V= ERCV (N,l) 10g2 W (25)
by =AY

s = ERCY( ) lOg i m (26)

i+l i+l

Whereas, if the exact eigenvalue is unknown then, we determine the parameter
r from the following formula

7\,(N) ;\’(N/Z)

r=ERC,(N.i)= @7)

log, — A ™
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The parameter s can be estimated using (26) and assuming that A, is numerically
determined for sufficiently high value of V.

4. Example of numerical simulations

In tests of verification of the numerical solutions, three cases are taken into
account:
e Example 1: p(x) = 1, ¢(x) = 0, w(x) = (1 +x) % 0 = 1, a2 = 0, By = 1, B> = 0,

b Example 2: P(x) = (x + 1)2> Q(x) = X2 - 2> W(X) = eXp(x)a A = 1> Ol = 09 Bl = Oa

B=1.
e Example 3: p(x) = 2 + sin(2nx), g(x) = =10, w(x) = 1 + sqrt(x), a; = 1, o, = 0,

B1=5>B2:1—

In all examples, the values of a = 0 and b = 1 have been assumed.

In the case of Example

the exact eigenvalues

are given by

A =174+ (i n/ln 2)2 [12], while for the remaining cases the exact eigenvalues are

unknown.

In Tables 2, 4 and 5, the numerical values of the first 8 eigenvalues for different
values of N and the calculated ERC, ((25) or (27)) for all examples are presented,
respectively. In addition, in Table 3, the calculated values of ERC; (26) for Exam-
ple 1 are shown.

Table 2
Eigenvalues and ERC, for Example 1

N AW ERC, AW ERC, AW ERC, A ERC,
100 | 20.7904297 82.3888961 184.976919 328.440408
200 | 20.7918238 |2.0001 | 82.4115895 | 2.0000 | 185.092175 | 1.9999 | 328.805046 | 1.9998
400 | 20.7921723 |2.0000 | 82.4172627 | 2.0000 | 185.120991 |2.0000 | 328.896222 | 1.9999
800 | 20.7922594 |2.0000 | 82.4186811 | 2.0000 | 185.128195 |2.0000 | 328.919017 |2.0000
1600 | 20.7922812 | 2.0067 | 82.4190356 | 1.9995 | 185.129996 |2.0001 | 328.924716 | 2.0000
3200 | 20.7922866 | 1.9994 | 82.4191243 | 2.0007 | 185.130446 |2.0000 | 328.926140 | 2.0000
anal. | 20.7922885 82.4191538 185.130596 328.926615
N AN ERC, AN ERC, AN ERC, AN ERC,
100 | 512.619722 737.309749 1002.26001 1307.17479
200 | 513.510262 | 1.9996 | 739.156478 | 1.9994 | 1005.68095 | 1.9992 | 1313.00956 | 1.9989
400 | 513.732969 | 1.9999 | 739.618392 | 1.9999 | 1006.53680 | 1.9998 | 1314.46964 | 1.9997
800 | 513.788651 |2.0000 | 739.733885 | 2.0000 | 1006.75080 | 1.9999 | 1314.83475 | 1.9999
1600 | 513.802571 | 2.0000 | 739.762760 | 2.0000 | 1006.80430 |2.0000 | 1314.92603 | 2.0000
3200 513.806051 | 2.0000 | 739.769978 | 2.0000 | 1006.81768 |2.0000 | 1314.94885 | 2.0000
anal. | 513.807211 739.772384 1006.82213 1314.95646
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Table 3
ERC; for Example 1

N _|ERC(N,1) | ERC(N,2)| ERC(N,3) |[ERC(N,4) | ERC(N,5)| ERC(N,6)| ERC(N,7) ERC(N.8)

100 | 4.0249 4.008 4.0037 4.0017 4.0006 3.9997 3.9989 3.9982
200 | 4.0250 4.0082 4.0040 4.0023 4.0014 4.0008 4.0004 4.0000
400 | 4.0250 4.0082 4.0041 4.0024 4.0016 4.0011 4.0007 4.0005
800 | 4.0250 4.0082 4.0041 4.0024 4.0016 4.0011 4.0008 4.0006
1600| 4.0322 4.0073 4.0043 4.0024 4.0016 4.0012 4.0009 4.0007
3200| 4.0309 4.0086 4.0042 4.0024 4.0017 4.0011 4.0008 4.0007

Table 4
Eigenvalues and ERC, for Example 2

N P ERC, AN ERC, A ERC., AW ERC.,

100 | 1.17035201 - 26.8573037 - 78.5053965 - 155.915777 -
200 | 1.17045757 | 2.0000 | 26.8618516 | 1.9999 | 78.5381317 | 1.9998 | 156.039051 | 1.9995
400 | 1.17048396 | 2.0000 | 26.8629886 | 2.0000 | 78.5463168 | 1.9999 | 156.069879 | 1.9999
800 | 1.17049056 | 2.0006 | 26.8632729 | 2.0001 | 78.5483631 |2.0000 | 156.077587 |2.0000
1600 | 1.17049221 | 1.9924 | 26.8633440 | 2.0000 | 78.5488747 | 1.9999 | 156.079514 | 2.0000
3200 1.17049262 - 26.8633617 - 78.5490026 - 156.079996 -

N AV ERC, Ae™ ERC. AN ERC. Ag® ERC,

100 | 259.010064 - 387.685285 - 541.813108 - 721.239858 -

200 | 259.344073 | 1.9992 | 388.427244 | 1.9988 | 543.256336 | 1.9982 | 723.792747 | 1.9976
400 | 259.427622 | 1.9998 | 388.612893 | 1.9997 | 543.617583 | 1.9996 | 724.432011 | 1.9994
800 | 259.448513 | 1.9999 | 388.659316 | 1.9999 | 543.707922 | 1.9999 | 724.591893 | 1.9999
1600 | 259.453735 | 2.0000 | 388.670922 | 2.0000 | 543.730508 |2.0000 | 724.631867 | 2.0000

3200| 259.455041 - 388.673823 - 543.736155 - 724.641861 -
Table 5
Eigenvalues and ERC, for Example 3
N L™ ERC, LN ERC, AN ERC, AN ERC,

100 | 2.89692971 - 24.0701022 - 66.8696550 - 130.023860 -
200 | 2.89762086 | 1.9999 | 24.0778646 |1.9998 | 66.9119064 | 1.9997 | 130.164588 | 1.9996
400 | 2.89779365 | 2.0000 | 24.0798055 |1.9999 | 66.9224715 | 1.9999 | 130.199780 | 1.9999
800 | 2.89783685 | 1.9999 | 24.0802907 |2.0000 | 66.9251129 | 2.0000 | 130.208579 | 2.0000
1600 | 2.89784765 | 1.9993 | 24.0804120 |1.9999 | 66.9257733 | 2.0000 | 130.210778 | 2.0000
3200 | 2.89785036 - 24.0804424 - 66.9259384 - 130.211328 -

N A ERC., A ERC., AN ERC., Ag® ERC.,
100 | 213.781678 - 318.196036 - 443.187196 - 588.625456 -
200 | 214.140243 | 1.9994 | 318.965739 |1.9992 | 444.653772 | 1.9990 | 591.185500 | 1.9998
400 | 214.229921 | 1.9998 | 319.158267 |1.9998 | 445.020663 | 1.9997 | 591.826047 | 1.9997
800 | 214.252343 | 2.0000 | 319.206405 |1.9999 | 445.112402 | 1.9999 | 591.986219 | 1.9999
1600| 214.257948 | 2.0000 | 319.218441 |2.0000 | 445.135338 | 2.0000 | 592.026264 | 2.0000
3200 214.259350 - 319.221449 - 445141072 - 592.036275 -

The analysis of the results presented in Tables 2-5 indicates that the rate r
(ERC,)) is close to 2, while the rate s (ERC)) is close to 4. Thus we can confirm that
the relationship (20) is satisfied. The errors in the approximation of eigenvalues
increase rapidly as the index of the eigenvalue grows.
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5. Conclusions

In this paper, the new approach based on the control volume method for finding
the eigenvalues of the Sturm-Liouville problem was discussed. The continuous
problem described by the differential equation with the adequate boundary condi-
tions was converted to the corresponding discrete one. The rate of convergence of
the proposed numerical scheme is order 2. The presented results of the approxima-
tion of eigenvalues are in close agreement with the results obtained in an analytical
way or in the mathematical software field. In the future, the presented approach can
be extended to apply high order of accuracy difference schemes for approximating
eigenvalues of the Sturm-Liouville problem and can be applied to the fractional
Sturm-Liouville problem which is related to the corresponding fractional Euler-
-Lagrangian equation [13].
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