PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear optical double image encryption using random-optical vortex in fractional Hartley transform domain

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposed an enhanced asymmetric cryptosystem scheme for optical image encryption in the fractional Hartley transform domain. Grayscale and binary images have been encrypted separately using double random phase encoding. Phase masks based on optical vortex and random phase masks have been jointly used in spatial as well as in the Fourier planes. The images to be encrypted are first multiplied by optical vortex and random phase mask and then transformed with direct and inverse fractional Hartley transform for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the fractional Hartley transform and optical vortex, whose digital implementation has been performed using MATLAB 7.6.0 (R2008a). The random phase masks, optical vortex and transform orders associated with the fractional Hartley transform are extra keys that cause difficulty to an unauthorized user. Thus, the proposed asymmetric scheme is more secure as compared to conventional techniques. The efficacy of the proposed asymmetric scheme is verified by computing the mean squared error between recovered and the original images. The sensitivity of the asymmetric scheme is also verified with encryption parameters, noise and occlusion attacks. Numerical simulation results demonstrate the effectiveness and security performance of the proposed system.
Czasopismo
Rocznik
Strony
557--578
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
  • Department of Applied Sciences, The NorthCap University, Sector 23-A, Gurgaon-122 017, India
Bibliografia
  • [1] NYE J.F., BERRY M.V., Dislocations in wave trains, Proceedings of the Royal Society of London A 336, 1974, pp. 165–190.
  • [2] LEACH J., YAO E., PADGETT M.J., Observation of the vortex structure of a non-integer vortex beam, New Journal of Physics 6, 2004, article ID 71.
  • [3] BERRY M.V., Optical vortices evolving from helicoidal integer and fractional phase steps, Journal of Optics A: Pure and Applied Optics 6(2), 2004, pp. 259–268.
  • [4] LEE W.M., YUAN X.-C., DHOLAKIA K., Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step, Optics Communications 239(1–3), 2004, pp. 129–135.
  • [5] FLOSSMANN F., SCHWARZ U.T., MAIER M., Propagation dynamics of optical vortices in Laguerre–Gaussian beams, Optics Communications 250(4–6), 2005, pp. 218–230.
  • [6] SWARTZLANDER G.A. JR., The optical lens, OPN, November, 2006, pp. 39–43.
  • [7] VYAS S., SINGH R.K., SENTHILKUMARAN P., Fractional vortex lens, Optics and Laser Technology 42(6), 2010, pp. 878–882.
  • [8] VYAS S., SINGH R.K., DEVINDER PAL GHAI, SENTHILKUMARAN P., Fresnel lens with embedded vortices, International Journal of Optics, Vol. 2012, 2012, article ID 249695.
  • [9] AMARAL A.M., FALCÃO-FILHO E.L., DE ARAÚJO C.B., Shaping optical beams with topological charge, Optics Letters 38(9), 2013, pp. 1579–1581.
  • [10] PREDA L., Generation of optical vortices by fractional derivative, Optics and Lasers in Engineering 54, 2014, pp. 42–48.
  • [11] REFREGIER P., JAVIDI B., Optical image encryption based on input plane and Fourier plane random encoding, Optics Letters 20(7), 1995, pp. 767–769.
  • [12] MATOBA O., NOMURA T., PEREZ-CABRE E., MILLAN M.S., JAVIDI B., Optical techniques for information security, Proceedings of the IEEE 97(6), 2009, pp. 1128–1148.
  • [13] ALFALOU A., BROSSEAU C., Optical image compression and encryption methods, Advances in Optics and Photonics 1(3), 2009, pp. 589–636.
  • [14] MILLAN M.S., PEREZ-CABRE E., Optical data encryption, [In] Optical and Digital Image Processing: Fundamentals and Applications, [Eds.] G. Cristobal, P. Schelkens, H. Thienpont, Wiley, 2011, pp. 739–767.
  • [15] JAVIDI B., CARNICER A., YAMAGUCHI M., NOMURA T., PÉREZ-CABRÉ E., MILLÁN M.S., NISHCHAL N.K., TORROBA R., BARRERA J.F., WENQI HE, XIANG PENG, STERN A., RIVENSON Y., ALFALOU A., BROSSEAU C., CHANGLIANG GUO, SHERIDAN J.T., GUOHAI SITU, NARUSE M., MATSUMOTO T., JUVELLS I., TAJAHUERCE E., LANCIS J., WEN CHEN, XUDONG CHEN, PINKSE P.W.H., MOSK A.P., MARKMAN A., Roadmap on optical security, Journal of Optics 18(8), 2016, article ID 083001.
  • [16] YADAV A.K., VASHISTH S., SINGH H., SINGH K., Optical cryptography and watermarking using some fractional canonical transforms, and structured masks, [In] Advances in Optical Science and Engineering Proceedings of the First International Conference, IEM OPTRONIX 2014, Springer Proceedings in Physics, Vol. 166, 2015, pp. 25–36.
  • [17] KUMAR P., JOSEPH J., SINGH K., Double random phase encoding based optical encryption systems using some linear canonical transforms: weaknesses and countermeasures, [In] Linear Canonical Transforms Theory and Applications, [Eds.] J.J. Healy, M. Alper Kutay, H.M. Ozaktas, J.T. Sheridan, Springer Series in Optical Sciences, Vol. 198, 2016, pp. 367–396.
  • [18] UNNIKRISHNAN G., JOSEPH J., SINGH K., Optical encryption by double-random phase encoding in the fractional Fourier domain, Optics Letters 25(12), 2000, pp. 887–889.
  • [19] DAHIYA M., SUKHIJA S., SINGH H., Image encryption using quad phase masks in fractional Fourier domain and case study, IEEE International Advance Computing Conference (IACC), 2014, pp. 1048–1053.
  • [20] MATOBA O., JAVIDI B., Encrypted optical memory system using three-dimensional keys in the Fresnel domain, Optics Letters 24(11), 1999, pp. 762–764.
  • [21] GUOHAI SITU, JINGJUAN ZHANG, Double random-phase encoding in the Fresnel domain, Optics Letters 29(14), 2004, pp. 1584–1586.
  • [22] SINGH H., YADAV A.K., VASHISTH S., SINGH K., Optical image encryption using devil’s vortex toroidal lens in the Fresnel transform domain, International Journal of Optics, Vol. 2015, 2015, article ID 926135.
  • [23] RODRIGO J.A., ALIEVA T., CALVO M.L., Gyrator transform: properties and applications, Optics Express 15(5), 2007, pp. 2190–2203.
  • [24] SINGH H., YADAV A.K., VASHISTH S., SINGH K., Fully phase image encryption using double random-structured phase masks in gyrator domain, Applied Optics 53(28), 2014, pp. 6472–6481.
  • [25] SINGH H., YADAV A.K., VASHISTH S., SINGH K., Double phase-image encryption using gyrator transforms, and structured phase mask in the frequency plane, Optics and Lasers in Engineering 67, 2015, pp. 145–156.
  • [26] LIANSHENG SUI, MINJIE XU, AILING TIAN, Optical noise-free image encryption based on quick response code and high dimension chaotic system in gyrator transform domain, Optics and Lasers in Engineering 91, 2017, pp. 106–114.
  • [27] SINGH H., Devil’s vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain, Optics and Lasers in Engineering 81, 2016, pp. 125–139.
  • [28] NANRUN ZHOU, YIXIAN WANG, LIHUA GONG, Novel optical image encryption scheme based on fractional Mellin transform, Optics Communications 284(13), 2011, pp. 3234–3242.
  • [29] VASHISTH S., SINGH H., YADAV A.K., SINGH K., Devil’s vortex phase structure as frequency plane mask for image encryption using the fractional Mellin transform, International Journal of Optics, Vol. 2014, 2014, article ID 728056.
  • [30] NANRUN ZHOU, HAOLIN LI, DI WANG, SHUMIN PAN, ZHIHONG ZHOU, Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform, Optics Communications 343, 2015, pp. 10–21.
  • [31] VASHISTH S., SINGH H., YADAV A.K., SINGH K., Image encryption using fractional Mellin transform, structured phase filters and phase retrieval, Optik – International Journal for Light and Electron Optics 125(18), 2014, pp. 5309–5315.
  • [32] SINGH H., Cryptosystem for securing image encryption using structured phase masks in Fresnel wavelet transform domain, 3D Research 7(4), 2016, article ID 34.
  • [33] WAN QIN, XIANG PENG, Asymmetric cryptosystem based on phase-truncated Fourier transforms, Optics Letters 35(2), 2010, pp. 118–120.
  • [34] WAN QIN, XIANG PENG, BRUCE GAO, XIANGFENG MENG, Universal and special keys based on phase-truncated Fourier transform, Optical Engineering 50(8), 2011, pp. 080501.
  • [35] XIAOGANG WANG, DAOMU ZHAO, Double-image self-encoding and hiding based on phase-truncated Fourier transforms and phase retrieval, Optics Communications 284(19), 2011, pp. 4441–4445.
  • [36] XIAOGANG WANG, DAOMU ZHAO, Double images encryption method with resistance against the specific attack based on an asymmetric algorithm, Optics Express 20(11), 2012, pp. 11994–12003.
  • [37] RAJPUT S.K., NISHCHAL N.K., Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask, Applied Optics 51(22), 2012, pp. 5377–5786.
  • [38] WEI LIU, ZHENGJUN LIU, JINGJING WU, SHUTIAN LIU, Asymmetric cryptosystem by using modular arithmetic operation based on double random phase encoding, Optics Communications 301–302, 2013, pp. 56–60.
  • [39] QU WANG, QING GUO, JINYUN ZHOU, Color image hiding based on phase-truncation and phase retrieval technique in fractional Fourier domain, Optik – International Journal for Light and Electron Optics 124(12), 2013, pp. 1224–1229.
  • [40] VASHISTH S., YADAV A.K., SINGH H., SINGH K., Watermarking in gyrator domain using an asymmetric cryptosystem, Proceedings of SPIE 9654, 2015, article ID 96542E.
  • [41] HARTLEY R.V.L., A more symmetrical Fourier analysis applied to transmission problems, Proceedings of the IRE 30(3), 1942, pp. 144–150.
  • [42] LINFEI CHEN, DAOMU ZHAO, Optical image encryption with Hartley transforms, Optics Letters 31(23), 2006, pp. 3438–3440.
  • [43] DAOMU ZHAO, XINXIN LI, LINFEI CHEN, Optical image encryption with redefined fractional Hartley transform, Optics Communications 281(21), 2008, pp. 5326–5329.
  • [44] SINGH N., SINHA A., Optical image encryption using Hartley transform and logistic map, Optics Communications 282(6), 2009, pp. 1104–1109.
  • [45] ZHENGJUN LIU, AHMAD M.A., SHUTIAN LIU, Image encryption based on double random amplitude coding in random Hartley transform domain, Optik – International Journal for Light and Electron Optics 121(11), 2010, pp. 959–964.
  • [46] XINXIN LI, DAOMU ZHAO, Optical color image encryption with redefined fractional Hartley transform, Optik – International Journal for Light and Electron Optics 121(7), 2010, pp. 673–677.
  • [47] JIMENEZ C., TORRES C., MATTOS L., Fractional Hartley transform applied to optical image encryption, Journal of Physics: Conference Series 274, 2011, article ID 012041.
  • [48] HONE-ENE HWANG, An optical image cryptosystem based on Hartley transform in the Fresnel transform domain, Optics Communications 284(13), 2011, pp. 3243–3247.
  • [49] ABUTURAB M.R., Color image security system on discrete Hartley transform in gyrator transform domain, Optics and Lasers in Engineering 51(3), 2013, pp. 317–324.
  • [50] VILARDY J.M., TORRES C.O., JIMENEZ C.J., Double image encryption method using the Arnold transform in the fractional Hartley domain, Proceedings of SPIE 8785, 2013, article ID 87851R.
  • [51] SINGH P., YADAV A.K., SINGH K., Phase image encryption in the fractional Hartley domain using Arnold transform and singular value decomposition, Optics and Lasers in Engineering 91, 2017, pp. 187–195.
  • [52] MUNIRAJ I., CHANGLIANG GUO, BYUNG-GEUN LEE, SHERIDAN J.T., Interferometry based multispectral photon-limited 2D and 3D integral image encryption employing the Hartley transform, Optics Express 23(12), 2015, pp. 15907–15920.
  • [53] LIHUA GONG, XINGBIN LIU, FEN ZHENG, NANRUN ZHOU, Flexible multiple-image encryption algorithm based on log-polar transform and double random phase encoding technique, Journal of Modern Optics 60(13), 2013, pp. 1074–1082.
  • [54] YADAV A.K., VASHISTH S., SINGH H., SINGH K., A phase-image watermarking scheme in gyrator domain using devil’s vortex Fresnel lens as a phase mask, Optics Communications 344, 2015, pp. 172–180.
  • [55] SINGH H., Optical cryptosystem of color images using random phase masks in the fractional wavelet transform domain, AIP Conference Proceedings 1728(1), 2016, article ID 020063.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdc5a4a8-95a0-4656-b669-da3a5067de9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.