PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of TIG Welding Parameters on the Mechanical Properties of 6061-T6 Aluminum Alloy Joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most common gas-shielded arc welding method is tungsten inert gas welding, which uses shielding gas to isolate the welded area. Such technique is mostly used in the industrial domain, including steel framework fabrication and installation, plumbing systems, and other building jobs. The welding method and the implementation of a suitable welding joint based on some factors that contribute to the fusion process were studied in the present research. The research investigated the specifications and efficiency of the area to be welded in terms of the thermal effect on the welding joint shape and some significant mechanical property-related factors which that were determined during the welding process. In this paper, aluminum alloy sheets, AA 6061-T6, with a thickness of 3 mm, were used with a 60mm width and 80mm length. These sheets were prepared to be welded using welding currents of 90A, 95A, and 100A, welding speeds of 60mm/min, 80 mm/min, and100 mm/min, and gas flow rates of 8 l/min, 9 l/min, and 10 l/min. The experiments were designed at three distinct levels. These levels were selected to create the L9 orthogonal array. Regression analysis, signal-to-noise ratio evaluation, and analysis of variance were carried out. The created model has enhanced accuracy by predicting the reinforced hardness found in the weld specimens, according to the regression study, which showed R2= 90.09%. In addition, it was discovered that the ideal welding parameters for a welded specimen were 100 A for welding current, 80 mm/min for welding speed, and 9 l/min for gas flow. The present research examined the shape of the thermal distribution of welded parts using the engineering computer program ANSYS. The experimental results clarified the proposed approach, as they showed that the welding current is the most influential factor in the hardness of the weld using the fusion process of 90.95%, followed by the welding speed of 7.48%, while the gas flow rate of 1.52% has the least effect. The authors recommend using qualified welders to ensure optimal performance. It is anticipated that these findings will serve as a foundation for analysis to optimize welding processes and reduce welding defects.
Twórcy
  • Automated Manufacturing Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Bagdad, Iraq
  • Automated Manufacturing Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Bagdad, Iraq
  • Automated Manufacturing Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Bagdad, Iraq
Bibliografia
  • 1. Fortain J.M., Gadrey S. How to select a suitable shielding gas to improve the performance of MIG and TIG welding of aluminium alloys. Welding International. 2013; 27(12): 936–947. doi: 10.1080/09507116.2012.753257.
  • 2. Mutombo K., M. du Toit. Corrosion fatigue behaviour of aluminium alloy 6061-T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy. Int J Fatigue. 2011; 33(12): 1539–1547. doi: 10.1016/j.ijfatigue.2011.06.012.
  • 3. Ramanaiah N., Prasad Rao K. Effect of modified AA4043 filler on corrosion behavior of AA6061 al- loy GTA welds. International Journal of Advanced Manufacturing Technology. 2013; 64: 9–12, 1545– 1554. doi: 10.1007/S00170-012-4121-4.
  • 4. A.A.-A.-K.E. Journal and undefined 2019. Modeling of Bending Properties of Stainless Steel 304 Sheets Welded by Tungsten Inert Gas Welding Process. Iasj.Net. 2019; 15(4): 10–22. doi: 10.22153/ kej.2019.09.003.
  • 5. Zhao Y., Yang Z., Domblesky J., Han J., Z.L. Investigation of through thickness microstructure and mechanical properties in friction stir welded 7N01 aluminum alloy plate. Materials Science and Engineering: A. 2019; 760: 316–327. Accessed: Jul. 31, 2023. [Online]. https://www.sciencedirect.com/ science/article/pii/S0921509319307798
  • 6. Cetkin E., Çelik Y. Microstructure and mechanical properties of AA7075/AA5182 jointed by FSW. J Mater Process Technol. 2019; 268: 107–116. Accessed: Jul. 31, 2023. [Online]. https://www.science- direct.com/science/article/pii/S0924013619300056
  • 7. Salih O., Neate N., Ou H., W.S.-J. of M. Processing, and undefined 2020. Influence of process parameters on the microstructural evolution and mechanical characterisations of friction stir welded Al-Mg-Si alloy. J Mater Process Technol. 2020; 275: 116–366. Accessed: Jul. 31, 2023. [Online]. https://www.sciencedirect.com/science/article/pii/ S0924013619303383
  • 8. Wang Z., Zhang Z., Xue P., Ni D., Z. M.-M. S. and, and undefined 2022. Defect formation, microstructure evolution, and mechanical properties of bobbin tool friction–stir welded 2219-T8 alloy. Materials Science and Engineering. 2022; A(832): 142–414. Accessed: Jul. 31, 2023. [Online]. https://www.sciencedirect.com/science/article/pii/ S0921509321016786
  • 9. Sasikumar A., Gopi S., Mohan D.G. Prediction of Filler Added Friction Stir Welding Parameters for Improving Corrosion Resistance of Dissimilar Aluminium Alloys 5052 and 6082 Joints. Advances in Materials Science. 2022; 22(3): 79–95. doi: 10.2478/ADMS-2022-0014.
  • 10. Kulkarni A., Dwivedi D., M.V. and, and undefined 2020, Microstructure and mechanical properties of A-TIG welded AISI 316L SS-Alloy 800 dissimilar metal joint. Materials Science and Engineering: A. 2020; 790: 139–685. Accessed: Jul. 31, 2023. [Online]. https://www.sciencedirect.com/science/ article/pii/S0921509320307644
  • 11. Chen L., Wang C., Xiong L., X. Zhang, G.M.-M. & Design, and undefined 2020. Microstructural, poosity and mechanical properties of lap joint laserwelding for 5182 and 6061 dissimilar aluminum alloys under different place. Elsevier, Accessed: Jul. 31, 2023. [Online]. https://www.sciencedirect.com/ science/article/pii/S0264127520301593
  • 12. Wang H., Liu X., and undefined 2020. Research on laser-TIG hybrid welding of 6061-T6 aluminum alloys joint and post heat treatment. Metals (Basel). 2020; 10: 130–145. doi: 10.3390/met10010130.
  • 13. Li L., Wang S., Huang W., and undefined 2020. Microstructure and mechanical properties of elec- tron beam welded TC4/TA7 dissimilar titanium alloy joint. J Manuf Process. 2020; 50: 295–304. Accessed: Jul. 31, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S1526612519303883
  • 14. Mohanavel V., Ravichandran M., S.K.-M.T. Proceedings, and undefined 2018, Optimization of tungsten inert gas welding parameters to: Attain maximum impact strength in AA6061 alloy joints using Taguchi Technique. Elsevier, Accessed: Jun. 21, 2023. [Online]. Available: https://www.science- direct.com/science/article/pii/S2214785318326166
  • 15. Jayashree P., Sharma S., Shetty R., A.M.-M. today, and undefined 2018. Optimization of TIG welding parameters for 6061Al alloy using Taguchi’s design of experiments. Elsevier, Accessed: Jun. 21, 2023. [Online]. https://www.sciencedirect.com/science/ article/pii/S2214785318324490
  • 16. Sathish T., Tharmalingam S. V.M.-A. in M., and undefined 2021. Weldability investigation and optimization of process variables for TIG-welded aluminium alloy (AA 8006). hindawi.com, Accessed: Jun. 21, 2023. [Online]. Available: https://www. hindawi.com/journals/amse/2021/2816338/
  • 17. Moshi A.A.M., Ravindran D., Sundara Bharathi S.R., Rex F.M.T., Kumar P.R. TIG Welding Process Parameter Optimization for Aluminium Alloy 6061 Using Grey Relational Analysis and Regression Equations. Advances in Intelligent Systems and Computing. 2020; 979: 413–425. doi: 10.1007/978-981-15-3215-3_41.
  • 18. Bansal A., Kumar M., Shekhar I., S.C.-M.T., and undefined 2021. Effect of welding parameter on mechanical properties of TIG welded AA6061. Elsevier, Accessed: Jun. 21, 2023. [Online]. Available: S2214785320356820
  • 19. Adalarasan R., Santhanakumar M. Parameter Design in Fusion Welding of AA 6061 Aluminium Alloy using Desirability Grey Relational Analysis (DGRA) Method. Journal of The Institution of Engineers (India): Series C. 2015; 96(1): 57–63. doi: 10.1007/S40032-014-0128-Y.
  • 20. Khoshroyan A., A.D.-T. of N.M.S. of, and undefined 2020. Effects of welding parameters and welding sequence on residual stress and distortion in Al6061-T6 aluminum alloy for T-shaped welded joint. Elsevier, Accessed: Jun. 21, 2023. [Online]. https://www.sciencedirect.com/science/article/pii/ S1003632619651812
  • 21. Tolephih M., Mashloosh K., Z.W.-A. engineering journal, and undefined 2011. Comparative study of the mechanical properties of (FS) and MIG welded joint in (AA7020-T6) aluminum alloy,” iasj.netMH Tolephih, KM Mashloosh, Z WaheedAl-khwarizmi engineering journal. 2011; 7(2): 35: 2011. Accessed: Aug. 01, 2023. [Online]. https://www.iasj.net/iasj/ download/98f8bf9593622e23
  • 22. Jayashree P., Gowrishankar M., S.S.-J. of M., and undefined 2020. Influence of homogenization and aging on tensile strength and fracture behavior of TIG welded Al6061-SiC composites. Elsevier, Accessed: Jun. 21, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S2238785420301083
  • 23. Ajezi-Sardroud R., Mostafapour A., F. A.-S.-I. J. of, and undefined 2022. Effect of Active Flux on Aluminum 6061 and its Mechanical Properties by Gas Tungsten Arc Welding Process. 2022; 35(8), 1501–1508. doi: 10.5829/ije.2022.35.08b.06.
  • 24. Reda R., Magdy M., M.R.-I.J. of S. and Technology, and undefined 2020. Ti–6Al–4V TIG weld analysis using FEM simulation and experimental characterization. Springer. 2019; 44(3): 765–782. doi: 10.1007/s40997-019-00287-y.
  • 25. Aghdeab S.H., Ghazi Abdulameer A., Hussein Kashkool L., Rasim Mohammed A. Optimization the Effect of Electrode Material Change on EDM Process Performance Using Taguchi Method. iasj. netSH Aghdeab, AG Abdulameer, LH Abdulameer, AR MohammedAl-Khwarizmi Engineering Jour-https://www.sciencedirect.com/science/article/pii/nal. 2020; 16(1). doi: 10.22153/kej.2020.09.001.
  • 26. Mondolfo L. Aluminum alloys: structure and prop-erties. 2013. Accessed: Jul. 31, 2023. [Online]. https://books.google.com/books?hl=en&lr=&id= Xf4kBQAAQBAJ&oi=fnd&pg=PP1&dq=Mondo lfo,+L.+F.+(2013).+Aluminum+alloys:+structure+ and+properties.+Elsevier.%E2%80%8F+&ots=Q6 6t1rJwuk&sig=aydMm4VrAtnMBj-4v3Pj68yhuGc
  • 27. Alloys W. International Alloy Designations and Chemical Composition Limits for Wrought Aluminum. Wrought Aluminum. 2015. Accessed: Jun. 21, 2023. [Online]. https://www.aluminum.org/sites/ default/files/2021-10/Teal%20Sheet.pdf
  • 28. Engineering A.-K., Al J., Jebbur A.M., Alkareem S.S.A., Mustafa F.F. Effect of MIG Welding Parameters on the Mechanical Properties of AISI 304 Austenitic Stainless Steels. 2022; 18(1): 1–15. DOI: 10.22153/kej.2022.01.001.
  • 29. Esmaily M., Mortazavi S., Todehfalah P., M.R.-M. Design, and undefined 2013. Microstructural characterization and formation of α′ martensite phase in Ti–6Al–4V alloy butt joints produced by friction stir and gas tungsten arc welding processes Elsevier. Accessed: Jun. 21, 2023. [Online] https://www.science- direct.com/science/article/pii/S026130691200845X
  • 30. Yadaiah N., S.B.-I. international, and undefined 2012. Effect of heat source parameters in thermal and mechanical analysis of linear GTA welding process. 2012; 52(11): 2069–2075. doi: 10.2355/ isijinternational.52.2069.
  • 31. Fu G., Lourenco M., Duan M., S.E.-J. of C. Steel, and undefined 2014. Effect of boundary conditions on residual stress and distortion in T-joint welds. Elsevier. 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0143974X14001977
  • 32. Chennaiah M., P.K., and undefined 2015. Effect of pulsed TIG welding parameters on the microstructure and micro-hardness of AA6061 joints. 2015; 4(4): 182. doi: 10.4172/2169-0022.1000182
  • 33. Ibrahim I., Mohamat S., Amir A., and unde-fined 2012. The Effect of Gas Metal Arc Welding (GMAW) processes on different welding parameters. Procedia Eng. 2012; 41: 1502–1506. Accessed: Jul. 31, 2023. [Online] https://www.sciencedirect. com/science/article/pii/S1877705812027427
  • 34. Liang Y., Shen J., Hu S., Wang H. Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG–CMT hybrid welding. J Mater Process Technol. 2018; 255: 161–174. Accessed: Jul. 31, 2023. [Online]. https://www.sciencedirect.com/science/article/pii/ S0924013617305897
  • 35. Datta S., Raza M.S., Das A.K., Saha P., Pratihar D.K. Laser beam welding of NiTinol sheets in butt joint arrangement and optimization of the process using desirability function analysis and metaheuristic techniques. Proceedings of the In- stitution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2022. doi: 10.1177/09544089221144509.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdc11281-c0cb-42cb-b8f2-fec3566777ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.