*γ***-PAIRED DOMINATING GRAPHS OF CYCLES**

Pannawat Eakawinrujee and Nantapath Trakultraipruk

Communicated by Dalibor Fronček

Abstract. A paired dominating set of a graph *G* is a dominating set whose induced subgraph contains a perfect matching. The paired domination number, denoted by $\gamma_{pr}(G)$, is the minimum cardinality of a paired dominating set of *G*. A $\gamma_{pr}(G)$ -set is a paired dominating set of cardinality $\gamma_{pr}(G)$. The γ -paired dominating graph of *G*, denoted by $PD_{\gamma}(G)$, as the graph whose vertices are $\gamma_{pr}(G)$ -sets. Two $\gamma_{pr}(G)$ -sets D_1 and D_2 are adjacent in $PD_{\gamma}(G)$ if there exists a vertex $u \in D_1$ and a vertex $v \notin D_1$ such that $D_2 = (D_1 \setminus \{u\}) \cup \{v\}$. In this paper, we present the γ -paired dominating graphs of cycles.

Keywords: paired dominating graph, paired dominating set, paired domination number.

Mathematics Subject Classification: 05C69, 05C38.

1. INTRODUCTION

For notation and terminology, we refer the reader to [9]. Let $G = (V(G), E(G))$ be a graph with the vertex set $V(G)$ and the edge set $E(G)$. For a vertex $v \in V(G)$, the *open neighborhood* and *closed neighborhood* of *v* are denoted by $N(v)$ and $N[v]$, respectively. For a set $D \subseteq V(G)$, the *open neighborhood* of *D* is $N(D) = \bigcup_{v \in D} N(v)$, and the *closed neighborhood* of *D* is $N[D] = N(D) \cup D$. The subgraph of *G* induced by *D* is denoted by *G*[*D*]. The vertices in *D dominate* the vertices in $S \subseteq V(G)$ if $S \subseteq N[D]$. We denote the graph obtained from *G* by deleting all vertices in *D* and all edges incident with them by *G* − *D*. A *path*, a *cycle*, and a *complete graph* with *n* vertices are denoted by P_n , C_n , and K_n , respectively.

A set $D \subseteq V(G)$ is a *dominating set* of *G* if $N[D] = V(G)$. The *domination number* $\gamma(G)$ is the minimum cardinality of a dominating set of *G*. A dominating set of cardinality $\gamma(G)$ is called a $\gamma(G)$ -set. For a detailed literature on domination, see [5, 6].

The *gamma graph* γ . G of a graph G, defined by Lakshmanan and Vijayakumar [7], as the graph whose vertices are $\gamma(G)$ -sets, and $\gamma(G)$ -sets D_1 and D_2 are adjacent in γ .*G* if $D_2 = (D_1 \setminus \{u\}) \cup \{v\}$ for some $u \in D_1$ and $v \notin D_1$. In 2011, Fricke *et al.* [2]

© 2022 Authors. Creative Commons CC-BY 4.0 31

also defined the *gamma graph* $G(\gamma)$ with different meaning. The only difference is that two $\gamma(G)$ -sets D_1 and D_2 are adjacent in $G(\gamma)$ if $D_2 = (D_1 \setminus \{u\}) \cup \{v\}$ for some $u \in D_1, v \notin D_1$, and $uv \in E(G)$. Notice that $G(\gamma)$ is a subgraph of γ . *G* with the same vertex set. In 2014, Haas and Seyffarth [3] introduced the *k-dominating* graph of *G*, denoted by $D_k(G)$, as the graph whose vertices are dominating sets of cardinality at most *k*. Two dominating sets D_1 and D_2 are adjacent in $D_k(G)$ if $D_2 = D_1 \cup \{v\}$ for some $v \notin D_1$. They gave conditions that ensure $D_k(G)$ is connected.

In 2017, Wongsriya and Trakultraipruk [10] defined the *γ-total dominating graph* of *G*, denoted by $TD_\gamma(G)$, as the graph whose vertices are $\gamma_t(G)$ -sets, which are total dominating sets of minimum cardinality. Two $\gamma_t(G)$ -sets D_1 and D_2 are adjacent in *TD*_{*γ*}(*G*) if $D_2 = (D_1 \setminus \{u\}) \cup \{v\}$ for some $u \in D_1$ and $v \notin D_1$. They determined the *γ*-total dominating graphs of paths and cycles. In 2019, Samanmoo *et al.* [8] introduced the *γ-independent dominating graph* of *G*, denoted by $ID_\gamma(G)$, as the graph whose vertices are $\gamma_i(G)$ -sets, which are independent dominating sets of minimum cardinality. Two $\gamma_i(G)$ -sets D_1 and D_2 are adjacent in $ID_\gamma(G)$ if $D_2 = (D_1 \setminus \{u\}) \cup \{v\}$ for some $u \in D_1, v \notin D_1$. They provided the *γ*-independent dominating graphs of paths and cycles.

A *matching* in *G* is a set of independent edges in *G*. A *perfect matching M* in *G* is a matching such that every vertex of *G* is incident to an edge of *M*. A set $D \subseteq V(G)$ is a *paired dominating set* of *G* if it is a dominating set and the induced subgraph *G*[*D*] has a perfect matching. The set $\{u, v\} \subseteq D$ is called *paired* if *uv* is an edge in a perfect matching of *G*[*D*]. The *paired domination number* $\gamma_{pr}(G)$ is the minimum cardinality of a paired dominating set of *G*. A $\gamma_{pr}(G)$ -set is a paired dominating set of cardinality $\gamma_{pr}(G)$. Paired domination was introduced by Haynes and Slater [4] as a model for assigning backups to guards for security purposes.

In [1], we introduced the *γ-paired dominating graph* of *G*, denoted by $PD_\gamma(G)$, as the graph whose vertices are $\gamma_{pr}(G)$ -sets, and two $\gamma_{pr}(G)$ -sets D_1 and D_2 are adjacent in $PD_\gamma(G)$ if $D_2 = (D_1 \setminus \{u\}) \cup \{v\}$ for some $u \in D_1$ and $v \notin D_1$. We determined the *γ*-paired dominating graphs of paths. In this paper, we present the *γ*-paired dominating graphs of cycles. For example, the *γ*-paired dominating graphs of cycles C_4 : $v_0v_1v_2v_3v_0$ and C_5 : $v_0v_1v_2v_3v_4v_0$ are shown in Figure 1. We see that $PD_{\gamma}(C_4) \cong C_4$ and $PD_{\gamma}(C_5) \cong K_5$.

Fig. 1. The γ -paired dominating graphs of C_4 and C_5 , respectively

2. PRELIMINARY RESULTS

In this section, we recall some definitions, notations, and results used in the main results.

Haynes and Slater [4] established the following useful lemma.

Lemma 2.1. *For any integer* $n \geq 3$, $\gamma_{pr}(P_n) = \gamma_{pr}(C_n) = 2\lceil \frac{n}{4} \rceil$.

The *Cartesian product* of graphs *G* and *H*, denoted by $G \square H$, is the graph with vertex set $V(G) \times V(H)$ whose vertices (u, v) and (u', v') are adjacent if $u = u'$ and $vv' \in E(H)$, or $v = v'$ and $uu' \in E(G)$.

For any positive integers *p* and *q*, let $P_p: u_1u_2u_3\cdots u_p$ and $P_q: v_1v_2v_3\cdots v_q$ be two paths with *p* and *q* vertices, respectively. Fricke *et al.* [2] defined a *stepgrid* $S_{G_{p,q}}$ to be the subgraph of $P_p \Box P_q$ induced by

$$
\{(u_x, v_y) \in V(P_p \Box P_q) : 1 \le x \le p, 1 \le y \le q, x - y \le 1\}.
$$

We call the vertex (u_x, v_y) in the stepgrid as the *vertex at the position* (x, y) . For example, the stepgrids $SG_{1,1}$, $SG_{2,2}$, and $SG_{4,3}$ are shown in Figure 2.

Fig. 2. The stepgrids $SG_{1,1}$, $SG_{2,2}$, and $SG_{4,3}$, respectively

For any positive integers p, q , and r , let $P_p: u_1u_2u_3\cdots u_p, P_q: v_1v_2v_3\cdots v_q$, and $P_r: w_1w_2w_3\cdots w_r$ be three paths with *p, q,* and *r* vertices, respectively. We define a *stepgrid* $SG_{p,q,r}$ as the graph with the vertex set

$$
V(SG_{p,q,r}) = \{(u_x, v_y, w_z) \in V(P_p \Box P_q \Box P_r) : 1 \le x \le p, 1 \le y \le q, 1 \le z \le r, x - y \le 0, x - z \le 1, y - z \ge 0\},\
$$

and the edge set

$$
E(SG_{p,q,r}) = E(P_p \Box P_q \Box P_r) \cup \{(u_x, v_x, w_x)(u_{x+1}, v_{x+1}, w_x) : 1 \le x \le p-1\}.
$$

The vertex (u_x, v_y, w_z) is called the *vertex at the position* (x, y, z) in $SG(p, q, r)$. For example, the stepgrids $SG_{2,2,1}$ and $SG_{3,3,2}$ are shown in Figure 3, and the stepgrid *SG*_{4,4,3} is shown in Figure 4, where we write (x, y, z) as (u_x, v_y, w_z) .

Fig. 3. The stepgrids $SG_{2,2,1}$ and $SG_{3,3,2}$, respectively

Fig. 4. The stepgrid $SG_{4,4,3}$

Let $P_n: v_1v_2v_3\cdots v_n$ be a path with *n* vertices. In [1], we determined the *γ*-paired dominating graphs of paths, and gave the following results.

Lemma 2.2. *Let* $k \geq 1$ *be an integer. Then there is only one* $\gamma_{pr}(P_{4k-1})$ *-set containing the pair* $\{v_{4k-2}, v_{4k-1}\}$ *, and there is only one* $\gamma_{pr}(P_{4k-1})$ *-set containing the pair* {*v*1*, v*2}*.*

Lemma 2.3. *Let* $k \geq 2$ *be an integer. Then all* $\gamma_{pr}(P_{4k-2})$ *-sets containing the pair* ${v_{4k-3}, v_{4k-2}}$ *form a path* $A_1A_2 \cdots A_k$ *with k vertices, where* A_1 *and* A_k *are of degree two, the others are of degree three, and A^k has a neighbor of degree two in* $PD_{\gamma}(P_{4k-2})$ *. Moreover,* A_k *contains the pair* $\{v_{4k-6}, v_{4k-5}\}$ *, and the others contain the pair* $\{v_{4k-7}, v_{4k-6}\}$ *. The similar results also hold for the* $\gamma_{pr}(P_{4k-2})$ *-sets containing the pair* {*v*1*, v*2}*.*

Lemma 2.4. *Let* $k \geq 3$ *be an integer. Then all* $\gamma_{pr}(P_{4k-3})$ *-sets containing the pair* $\{v_{4k-4}, v_{4k-3}\}$ *form a stepgrid* $SG_{k,k-1}$ *, where* $B_{1,1}, B_{2,1}, B_{1,k-1}$ *are of degree three,* $B_{2,k-1}, B_{3,k-1}, \ldots, B_{k-1,k-1}$ are of degree four, and $B_{k,k-1}$ is of degree two in $PD_{\gamma}(P_{4k-3})$ *. Moreover*, $B_{1,k-1}, B_{2,k-1}, \ldots, B_{k-1,k-1}$ *, contain the pair* $\{v_{4k-7}, v_{4k-6}\}$ *, and Bk,k*−¹ *contains the pair* {*v*4*k*−6*, v*4*k*−5} (*see Figure 5*)*. The similar results also hold for the* $\gamma_{pr}(P_{4k-3})$ -sets containing the pair $\{v_1, v_2\}$.

Fig. 5. The stepgrid $SG_{k,k-1}$

Theorem 2.5. *Let* $k \geq 1$ *be an integer. Then* $PD_{\gamma}(P_{4k}) \cong P_1$ *.*

Theorem 2.6. *Let* $k \geq 1$ *be an integer. Then* $PD_{\gamma}(P_{4k-1}) \cong P_{k+1}$ *.*

Theorem 2.7. *Let* $k \geq 1$ *be an integer. Then* $PD_{\gamma}(P_{4k-2}) \cong SG_{k,k}$ *.*

Corollary 2.8. *Let* $k \geq 2$ *be an integer, and* $A_{x,y}$ *the* $\gamma_{pr}(P_{4k-2})$ *-set at the position* (x, y) *in* $PD_{\gamma}(P_{4k-2}) \cong SG_{k,k}$ (see Figure 6) for all $x, y \in \{1, 2, \ldots, k\}$ with $x - y \leq 1$. *If Ax,k contains the pair* {*v*⁴*k*−³*, v*⁴*k*−²}*, then we get the following properties.*

- (A1) *If* $y = k$ *, then* $A_{x,y}$ *contains the pair* $\{v_{4k-3}, v_{4k-2}\}$ *; otherwise, it contains the pair* {*v*_{4*k*−4}*, v*_{4*k*−3}}*.*
	- $(A1.1)$ *A*_{*x*,k} *contains the pairs* $\{v_{4k-7}, v_{4k-6}\}, \{v_{4k-3}, v_{4k-2}\}$ *for all* $x \in \{1, 2, \ldots, k-1\}$ *, and* $A_{k,k}$ *contains the pairs* $\{v_{4k-6}, v_{4k-5}\}$ *,* {*v*⁴*k*−³*, v*⁴*k*−²}*.*
- (A2) If $x = 1$, then $A_{x,y}$ contains the pair $\{v_1, v_2\}$; otherwise, it contains *the pair* $\{v_2, v_3\}$ *.*

(A2.1) $A_{1,1}$ *contains the pairs* $\{v_1, v_2\}$, $\{v_4, v_5\}$, and $A_{1,y}$ *contains the pairs* $\{v_1, v_2\}, \{v_5, v_6\}$ *for all* $y \in \{2, 3, \ldots, k\}.$

Theorem 2.9. *Let* $k \geq 2$ *be an integer. Then* $PD_{\gamma}(P_{4k-3}) \cong SG_{k,k,k-1}$.

Corollary 2.10. *Let* $k \geq 3$ *be an integer and* $B_{x,y,z}$ *the* $\gamma_{pr}(P_{4k-3})$ *-set at the position* (x, y, z) *in* $PD_\gamma(P_{4k-3}) \cong SG_{k,k,k-1}$ (*see Figure 7*) *for all* $x, y \in \{1, 2, \ldots, k\}$ *, z* ∈ {1, 2, ..., *k* − 1} *with* $x - y \le 0$, $x - z \le 1$, $y - z \ge 0$. If $B_{x,k,z}$ contains the pair {*v*⁴*k*−⁴*, v*⁴*k*−³}*, then we get the following properties.*

- (B1) *If* $y = k$ *, then* $B_{x,y,z}$ *contains the pair* $\{v_{4k-4}, v_{4k-3}\}$ *; otherwise, it contains the pair* $\{v_{4k-5}, v_{4k-4}\}.$
	- (B1.1) *Bx,k,k*−¹ *contains the pairs* {*v*4*k*−7*, v*4*k*−6}*,* {*v*4*k*−4*, v*4*k*−3} *for all x* ∈ {1, 2, . . . , *k* − 1}*,* and *B*_{*k*,*k*,*k*−1} *contains the pairs* {*v*_{4*k*−6}*, v*_{4*k*−5}}*,* {*v*4*k*−4*, v*4*k*−3}*.*
	- (B1.2) $B_{x,k,z}$ *contains the pairs* $\{v_{4k-8}, v_{4k-7}\}, \{v_{4k-4}, v_{4k-3}\}$ *for all* $z \neq k-1$ *.*
- (B2) If $x = 1$, then $B_{x,y,z}$ contains the pair $\{v_1, v_2\}$; otherwise, it contains *the pair* {*v*2*, v*3}*.* (B2.1) $B_{1,1,1}$ *contains the pairs* $\{v_1, v_2\}$, $\{v_3, v_4\}$ *, and* $B_{1,y,1}$ *contains the pairs* $\{v_1, v_2\}, \{v_4, v_5\}$ *for all* $y \in \{2, 3, \ldots, k\}.$
	- (B2.2) $B_{1,y,z}$ *contains the pairs* $\{v_1, v_2\}$, $\{v_5, v_6\}$ *for all* $z \neq 1$ *.*

Fig. 6. The stepgrid $SG_{k,k}$

Fig. 7. The stepgrid $SG_{k,k,k-1}$

3. *γ*-PAIRED DOMINATING GRAPHS OF CYCLES

In this section, we present the γ -paired dominating graphs of cycles. We always let C_n : $v_0v_1v_2\cdots v_{n-1}v_0$ be a cycle with *n* vertices. We first consider the *γ*-paired dominating graph of C_{4k} , as stated the following theorem.

Theorem 3.1. *Let* $k \geq 1$ *be an integer. Then*

$$
PD_{\gamma}(C_{4k}) \cong \begin{cases} C_4 & \text{if } k = 1; \\ 4P_1 & \text{if } k \ge 2. \end{cases}
$$

Proof. From Figure 1, we get that $PD_\gamma(C_4) \cong C_4$. Let $k \geq 2$. By Theorem 2.1, we have $\gamma_{pr}(C_{4k}) = 2k$. It is easy to check that

$$
\{v_0, v_1, v_4, v_5, \ldots, v_{4k-4}, v_{4k-3}\}, \{v_1, v_2, v_5, v_6, \ldots, v_{4k-3}, v_{4k-2}\},
$$

$$
\{v_2, v_3, v_6, v_7, \ldots, v_{4k-2}, v_{4k-1}\}, \{v_3, v_4, v_7, v_8, \ldots, v_{4k-1}, v_{4k}\}
$$

are the only $\gamma_{pr}(C_{4k})$ -sets. Thus, $PD_{\gamma}(C_{4k}) \cong 4P_1$.

Before we prove the result on the γ -paired dominating graph of a cycle with $4k + 3$ vertices, we need the following lemma.

Lemma 3.2. Let $k \geq 0$ be an integer and D a $\gamma_{pr}(C_{4k+3})$ -set. Then there is exactly *one vertex not in D dominated by two vertices of D.*

Proof. We can easily get that the lemma holds for $k = 0$. Let $k \geq 1$. Note that $|D| = 2k + 2$, so we can write $D = \bigcup_{x=1}^{k+1} D_x$, where D_x 's are pairwise disjoint sets of paired vertices. Clearly, $|N[D_x]| = 4$ for all $x \in \{1, 2, 3, \ldots, k + 1\}$, and $V(C_{4k+3}) = \bigcup_{x=1}^{k+1} N[D_x]$. If $N[D_x]$'s are pairwise disjoint sets, then

$$
4k + 3 = |V(C_{4k+3})| = \sum_{x=1}^{k+1} |N[D_x]| = 4k + 4,
$$

a contradiction. Therefore, without loss of generality, there are exactly two disjoint sets D_1 and D_2 such that $|N[D_1] \cap N[D_2]| = 1$. Thus, this common vertex is the only vertex not in D dominated by two vertices of D . vertex not in *D* dominated by two vertices of *D*.

Theorem 3.3. *Let* $k \geq 0$ *be an integer. Then* $PD_{\gamma}(C_{4k+3}) \cong C_{4k+3}$ *.*

Proof. For convenience, we omit the modulo $4k+3$ in the subscript of each vertex. For example, we write v_{x+1} instead of $v_{(x+1) \pmod{4k+3}}$. For each $x \in \{0, 1, 2, \ldots, 4k+2\}$, let

$$
D_x = \{v_{x+4i+1}, v_{x+4i+2} : 0 \le i \le k\}
$$

as shown in Figure 8, where D_x contains the black vertices. It is easy to check that D_x is a $\gamma_{pr}(C_{4k+3})$ -set such that $v_x \notin D_x$ is the only vertex dominated by two vertices of D_x . Hence, $D_0, D_1, D_2, \ldots, D_{4k+2}$ are all distinct. Similarly, we omit the modulo $4k+3$ in the subscript of each $\gamma_{pr}(C_{4k+3})$ -set.

 \Box

Fig. 8. The $\gamma_{pr}(C_{4k+3})$ -set D_x

Claim that $D_0, D_1, D_2, \ldots, D_{4k+2}$ are the only $\gamma_{pr}(C_{4k+3})$ -sets. Let *D* be any $\gamma_{pr}(C_{4k+3})$ -set. By Lemma 3.2, there is a unique vertex $v_x \notin D$ for some $x \in \{0, 1, 2, \ldots, 4k + 2\}$, dominated by two vertices of *D*, so $D = D_x$.

Let $x \in \{0, 1, 2, \ldots, 4k + 2\}$. To find all neighbors of D_x in $PD_\gamma(C_{4k+3})$, we can only replace v_{x+1} by v_{x+3} , or v_{x-1} by v_{x-3} since v_x is the only vertex dominated by *v*_{*x*+1} and *v*_{*x*−1} of *D*_{*x*}. Thus, $(D_x \setminus \{v_{x+1}\}) \cup \{v_{x+3}\}$ and $(D_x \setminus \{v_{x-1}\}) \cup \{v_{x-3}\}$ are the only two neighbors of D_x in $PD_\gamma(C_{4k+3})$. Note that

$$
(D_x \setminus \{v_{x+1}\}) \cup \{v_{x+3}\} = D_{x+4}
$$

since v_{x+4} is the only vertex dominated by two dominating vertices. Similarly,

$$
(D_x \setminus \{v_{x-1}\}) \cup \{v_{x-3}\} = D_{x-4}.
$$

Therefore, *D*₀, *D*₄, ..., *D*_{4*k*−4}, *D*₄*k*, *D*₁, *D*₅, ..., *D*_{4*k*−3}, *D*_{4*k*+1}, *D*₂, *D*₆, ..., *D*_{4*k*−2}, $D_{4k+2}, D_3, D_7, \ldots, D_{4k-1}, D_0$ form a cycle with $4k+3$ vertices. This completes the proof. the proof.

Before we determine the γ -paired dominating graph of a cycle with $4k + 2$ vertices, we define some notations and a new graph called a loopgrid.

For a nonnegative integer *i*, let $P_n(v_i : v_{i+n-1}) : v_i v_{i+1} v_{i+2} \cdots v_{i+n-1}$ be a path with *n* vertices.

For any positive integer *k*, let $G_1: u_1u_2u_3\cdots u_{2k-1}$ and $G_2: v_1v_2v_3\cdots v_{3k-1}$ be two paths with $2k - 1$ and $3k - 1$ vertices, respectively. We define a *loopgrid* of size k , denoted by LG_k , as the graph with the vertex set

$$
V(LG_k) = \{(u_x, v_y) \in V(G_1 \square G_2) : 1 \le x \le 2k - 1, 1 \le y \le 3k - 1, 0 \le y - x \le k\},\
$$

and the edge set

$$
E(LG_k) = E(G_1 \square G_2) \cup \{(u_1, v_y)(u_{2k-1}, v_{y+2k-1}) : 1 \le y \le k\}.
$$

For example, Figure 9 illustrates the loopgrids LG_1 and LG_2 , where we use (x, y) as (u_x, v_y) .

Fig. 9. The loopgrids *LG*¹ and *LG*2, respectively

Lemma 3.4. *Let* $k \geq 2$ *be an integer.*

- (1) *Each* $\gamma_{pr}(C_{4k+2})$ -set cannot contain any six or more consecutive vertices.
- (2) *For any fixed four consecutive vertices in* C_{4k+2} *, there is exactly one* $\gamma_{pr}(C_{4k+2})$ -set *containing them.*

Proof. We prove the first claim by contradiction. Suppose that there is a $\gamma_{pr}(C_{4k+2})$ -set *D* containing *l* consecutive vertices of C_{4k+2} , where $l \geq 6$ is an integer. Then these *l* vertices dominate $l + 2$ vertices in C_{4k+2} . Since $\gamma_{pr}(C_{4k+2}) = 2k + 2$, the other $2k + 2 - l$ vertices of *D* must dominate at least $4k + 2 - (l + 2) = 4k - l$ vertices in C_{4k+2} . We consider them as a path with $4k - l$ vertices. Note that the $2k + 2 - l$ remaining vertices of *D* can dominate at most $4k + 4 - 2l < 4k - l$ vertices in this path since $l \geq 6$. Thus, *D* cannot dominate all vertices in C_{4k+2} , a contradiction.

For the second claim, without loss of generality, we assume the four vertices are v_1, v_2, v_3, v_4 . We find all $\gamma_{pr}(C_{4k+2})$ -sets containing them. By the first claim, all such $\gamma_{pr}(C_{4k+2})$ -sets cannot contain v_0 and v_5 . The vertices v_1, v_2, v_3, v_4 dominate six vertices in C_{4k+2} . Note that $\gamma_{pr}(C_{4k+2}) = 2k+2$, so the other $2k-2$ vertices must dominate all vertices in $P_{4k-4}(v_6 : v_{4k+1})$. Since $\gamma_{pr}(P_{4k-4}(v_6 : v_{4k+1})) = 2k - 2$, these $2k - 2$ vertices form a $\gamma_{pr}(P_{4k-4}(v_6 : v_{4k+1}))$ -set. Thus, each $\gamma_{pr}(C_{4k+2})$ -set containing v_1, v_2, v_3, v_4 is a union of a $\gamma_{pr}(P_{4k-4}(v_6 : v_{4k+1}))$ -set and $\{v_1, v_2, v_3, v_4\}.$ By Theorem 2.5, there is a unique $\gamma_{pr}(P_{4k-4}(v_6 : v_{4k+1}))$ -set. The claim follows. \Box

Theorem 3.5. *Let* $k > 1$ *be an integer. Then*

$$
PD_{\gamma}(C_{4k+2}) \cong \begin{cases} C_3 \square C_3 & \text{if } k = 1, \\ LG_{k+1} & \text{if } k \ge 2. \end{cases}
$$

Proof. Figure 10 shows that $PD_\gamma(C_6) \cong C_3 \square C_3$.

Fig. 10. The γ -paired dominating graph of C_6

Let $k \geq 2$. Since each $\gamma_{pr}(C_{4k+2})$ -set must dominate the vertex v_0 , we get it contains either the pair $\{v_{4k}, v_{4k+1}\}, \{v_{4k+1}, v_0\}, \{v_0, v_1\}, \text{ or } \{v_1, v_2\}.$ We first find all $\gamma_{pr}(C_{4k+2})$ -sets containing the pair $\{v_{4k}, v_{4k+1}\}\$. By Lemma 3.4(1), such a $\gamma_{pr}(C_{4k+2})$ -set must satisfy one of the following:

- (i) it contains the pair $\{v_{4k}, v_{4k+1}\}\$ but not v_{4k-1}, v_0 ,
- (ii) it contains the pairs $\{v_{4k-2}, v_{4k-1}\}\$ and $\{v_{4k}, v_{4k+1}\}\$,
- (iii) it contains the pairs $\{v_{4k}, v_{4k+1}\}\$ and $\{v_0, v_1\}.$

Note that each $\gamma_{pr}(C_{4k+2})$ -set containing the pair $\{v_{4k}, v_{4k+1}\}$ but not v_{4k-1}, v_0 is a union of a $\gamma_{pr}(P_{4k-2}(v_1 : v_{4k-2}))$ -set and $\{v_{4k}, v_{4k+1}\}$. By Theorem 2.7, we have

$$
PD_{\gamma}(P_{4k-2}(v_1: v_{4k-2})) \cong SG_{k,k}.
$$

For all $x, y \in \{1, 2, \ldots, k\}$ with $x - y \leq 1$, let $A_{x,y}^{(1)}$ be the $\gamma_{pr}(P_{4k-2}(v_1 : v_{4k-2}))$ -set at the position (x, y) in this stepgrid $SG_{k,k}$, and let

$$
D_{x,y}^{(1)} = A_{x,y}^{(1)} \cup \{v_{4k}, v_{4k+1}\}.
$$

Thus, $D_{x,y}^{(1)}$'s are the only $\gamma_{pr}(C_{4k+2})$ -sets containing the pair $\{v_{4k}, v_{4k+1}\}\$, but not v_{4k-1}, v_0 , and they form a stepgrid $SG_{k,k}$ in $PD_\gamma(C_{4k+2})$. By Lemma 2.3, without loss of generality, we assume that $A_{x,k}$ contains the pair $\{v_{4k-3}, v_{4k-2}\}\$ for each $x \in \{1, 2, \ldots, k\}$. By Corollary 2.8 (A1.1), we have $A_{k,k}^{(1)}$ contains the pairs {*v*⁴*k*−⁶*, v*⁴*k*−⁵}*,* {*v*⁴*k*−³*, v*⁴*k*−²}. Let

$$
D_{k+1,k}^{(1)} = (D_{k,k}^{(1)} \setminus \{v_{4k-3}\}) \cup \{v_{4k-1}\}.
$$

By Lemma 3.4(2), the set $D_{k+1,k}^{(1)}$ is the only $\gamma_{pr}(C_{4k+2})$ -set containing the pairs ${v_{4k-2}, v_{4k-1}}$ and ${v_{4k}, v_{4k+1}}$. By Corollary 2.8 (A2.1), we get $A_{1,1}^{(1)}$ contains the pairs {*v*1*, v*2}*,* {*v*4*, v*5}. Let

$$
D_{1,0}^{(1)} = (D_{1,1}^{(1)} \setminus \{v_2\}) \cup \{v_0\}.
$$

By Lemma 3.4(2), the set $D_{1,0}^{(1)}$ is the only $\gamma_{pr}(C_{4k+2})$ -set containing the pairs $\{v_{4k}, v_{4k+1}\}\$ and $\{v_0, v_1\}$. Therefore, all $D_{x,y}^{(1)}$'s form the graph, named $D^{(1)}$, in $PD_{\gamma}(C_{4k+2})$ as shown in Figure 11.

Fig. 11. The graphs $D^{(1)}$, $D^{(2)}$, $D^{(3)}$, and $D^{(4)}$ in $PD_{\gamma}(C_{4k+2})$

Similarly, we can construct all $\gamma_{pr}(C_{4k+2})$ -sets as follows (the subscripts of all vertices are modulo $4k + 2$): for all $x, y \in \{1, 2, ..., k\}$ with $x - y \le 0$, and for each $i \in \{1, 2, 3, 4\},\$

$$
D_{x,y}^{(i)} = A_{x,y}^{(i)} \cup \{v_{4k-1+i}, v_{4k+i}\}, \text{ where } A_{x,y}^{(i)} \text{ is a } \gamma_{pr}(P_{4k-2}(v_i : v_{4k-3+i}))\text{-set},
$$

$$
D_{k+1,k}^{(i)} = (D_{k,k}^{(i)} \setminus \{v_{4k-4+i}\}) \cup \{v_{4k-2+i}\},
$$

and

$$
D_{1,0}^{(i)} = (D_{1,1}^{(i)} \setminus \{v_{i+1}\}) \cup \{v_{i-1}\}.
$$

These $D_{x,y}^{(i)}$'s are the only $\gamma_{pr}(C_{4k+2})$ -sets containing the pair $\{v_{4k-1+i}, v_{4k+i}\}\$, and they form the graph $D^{(i)}$ in $PD_{\gamma}(C_{4k+2})$ (see Figure 11). By Lemma 2.3, without loss of generality, we assume $A_{x,k}^{(i)}$ contains the pair $\{v_{4k-4+i}, v_{4k-3+i}\}$. For all $x, y \in \{1, 2, \ldots, k\}$ with $x - y \leq 1$, we get the following properties.

- $(A'1)$ If $y = k$, then $D_{x,y}^{(i)}$ contains the pairs $\{v_{4k-4+i}, v_{4k-3+i}\}, \{v_{4k-1+i}, v_{4k+i}\};$ otherwise, it contains the pairs $\{v_{4k-5+i}, v_{4k-4+i}\}, \{v_{4k-1+i}, v_{4k+i}\}.$
	- $(A'1.1)$ for all $x \in \{1, 2, \ldots, k-1\}$, $D_{x,k}^{(i)}$ contains the pairs $\{v_{4k-8+i}, v_{4k-7+i}\}$, $\{v_{4k-4+i}, v_{4k-3+i}\}, \{v_{4k-1+i}, v_{4k+i}\}, \text{and } D_{k,k}^{(i)} \text{ contains the pairs }$ $\{v_{4k-7+i}, v_{4k-6+i}\}, \{v_{4k-4+i}, v_{4k-3+i}\}, \{v_{4k-1+i}, v_{4k+i}\}.$
- (A'2) If $x = 1$, then $D_{x,y}^{(i)}$ contains the pairs $\{v_{4k-1+i}, v_{4k+i}\}, \{v_i, v_{i+1}\}$; otherwise, it contains the pairs $\{v_{4k-1+i}, v_{4k+i}\}, \{v_{i+1}, v_{i+2}\}.$
	- $(A'2.1)$ $D_{1,1}^{(i)}$ contains the pairs $\{v_{4k-1+i}, v_{4k+i}\}, \{v_i, v_{i+1}\}, \{v_{i+3}, v_{i+4}\},$ and $D_{1,y}^{(i)}$ contains the pairs $\{v_{4k-1+i}, v_{4k+i}\}, \{v_i, v_{i+1}\}, \{v_{i+4}, v_{i+5}\}$ for all $y \in \{2, 3, \ldots, k\}.$
- (A'3) $D_{k+1,k}^{(i)}$ is the only $\gamma_{pr}(C_{4k+2})$ -set in $D^{(i)}$ containing the pairs ${v_{4k-7+i}, v_{4k-6+i}}, \{v_{4k-3+i}, v_{4k-2+i}\}, \{v_{4k-1+i}, v_{4k+i}\}, \{v_{i+1}, v_{i+2}\}.$
- (A'4) $D_{1,0}^{(i)}$ is the only $\gamma_{pr}(C_{4k+2})$ -set in $D^{(i)}$ containing the pairs ${v_{4k-5+i}, v_{4k-4+i}, \{v_{4k-1+i}, v_{4k+i}\}, \{v_{i-1}, v_i\}, \{v_{i+3}, v_{i+4}\}.$

Note that $D^{(1)}$ and $D^{(2)}$ cannot have any common vertices in $PD_{\gamma}(C_{4k+2})$ since otherwise there is a $\gamma_{pr}(C_{4k+2})$ -set containing the pairs $\{v_{4k}, v_{4k+1}\}\$ and $\{v_{4k+1}, v_0\}$, which is impossible. Similarly, $D^{(i)}$ and $D^{(i+1)}$ do not share any vertices in $PD_{\gamma}(C_{4k+2})$ for all $i \in \{2, 3\}.$

We then consider all $\gamma_{pr}(C_{4k+2})$ -sets that are in both $D^{(1)}$ and $D^{(3)}$. Then these sets must contain the pairs $\{v_{4k}, v_{4k+1}\}, \{v_0, v_1\}.$ By $(A'4)$ and $(A'3)$, $D_{1,0}^{(1)}$ and $D_{k+1,k}^{(3)}$ are the only $\gamma_{pr}(C_{4k+2})$ -sets in $D^{(1)}$ and $D^{(3)}$, respectively, containing the pairs $\{v_{4k}, v_{4k+1}\}, \{v_0, v_1\}.$ By Lemma 3.4(2), we get $D_{1,0}^{(1)} = D_{k+1,k}^{(3)}$. Similarly, $D_{1,0}^{(2)} = D_{k+1,k}^{(4)}$ is the only $\gamma_{pr}(C_{4k+2})$ -set that is in both $D^{(2)}$ and $D^{(4)}$.

We next consider all $\gamma_{pr}(C_{4k+2})$ -sets, which are in both $D^{(1)}$ and $D^{(4)}$. These sets must contain the pairs $\{v_{4k}, v_{4k+1}\}, \{v_1, v_2\}$. By $(A'2), D_{1,1}^{(1)}, D_{1,2}^{(1)}, \ldots, D_{1,k}^{(1)}$ are the only $\gamma_{pr}(C_{4k+2})$ -sets in $D^{(1)}$ containing the pairs $\{v_{4k}, v_{4k+1}\}, \{v_1, v_2\}$, and they form a path with *k* vertices. Then they also form a path in $D^{(4)}$. By $(A'1)$, $D_{1,k}^{(4)}$, $D_{2,k}^{(4)}$, ..., $D_{k,k}^{(4)}$ are the only $\gamma_{pr}(C_{4k+2})$ -sets in $D^{(4)}$ containing the pairs $\{v_{4k}, v_{4k+1}\}, \{v_1, v_2\},$ and they form a path with *k* vertices. To show that $D_{1,y}^{(1)} = D_{y,k}^{(4)}$ for each $y \in \{1, 2, \ldots, k\}$, it suffices to show that $D_{1,1}^{(1)} = D_{1,k}^{(4)}$. By (A'2.1), $D_{1,1}^{(1)}$ contains the pairs $\{v_{4k}, v_{4k+1}\},$ $\{v_1, v_2\}, \{v_4, v_5\}$. By (A'1) and (A'2), $D_{1,k}^{(4)}$ is the only $\gamma_{pr}(C_{4k+2})$ -set in $D^{(4)}$ containing these three pairs, and hence, $D_{1,1}^{(1)} = D_{1,k}^{(4)}$.

Next, we consider all edges between a set in $D^{(1)}$ and a set in $D^{(2)}$. We first show that $D_{1,0}^{(1)}$ has no neighbors in $D^{(2)}$. By $(A'4)$, $D_{1,0}^{(1)}$ contains the pairs $\{v_{4k-4}, v_{4k-3}\}, \{v_{4k}, v_{4k+1}\}, \{v_0, v_1\}, \{v_4, v_5\}.$ Since each set in $D^{(2)}$ contains the pair $\{v_{4k+1}, v_0\}$, the set $D_{1,0}^{(1)}$ is adjacent to some set in $D^{(2)}$ if and only if $(D_{1,0}^{(1)} \setminus \{v_{4k}\}) \cup \{v_2\}$ or $(D_{1,0}^{(1)} \setminus \{v_1\}) \cup \{v_{4k-1}\}$ is a $\gamma_{pr}(C_{4k+2})$ -set. It is easy to check that $D_{1,0}^{(1)}$ is not adjacent to any sets in $D^{(2)}$. By $(A'3)$,

 $D_{k+1,k}^{(1)}$ contains the pairs $\{v_{4k-6}, v_{4k-5}\}, \{v_{4k-2}, v_{4k-1}\}, \{v_{4k}, v_{4k+1}\}, \{v_2, v_3\},\$ so $D_{k+1,k}^{(1)}$ is adjacent to some set in $D^{(2)}$ if and only if $(D_{k+1,k}^{(1)} \setminus \{v_{4k}\}) \cup \{v_0\}$ or $(D_{k+1,k}^{(1)} \setminus \{v_{4k-2}\}) \cup \{v_0\}$ is a $\gamma_{pr}(C_{4k+2})$ -set. We have $(D_{k+1,k}^{(1)} \setminus \{v_{4k}\}) \cup \{v_0\}$ is a $\gamma_{pr}(C_{4k+2})$ -set, but $(D_{k+1,k}^{(1)} \setminus \{v_{4k-2}\}) \cup \{v_0\}$ is not. We show that $D_{k+1,k}^{(1)}$ and $D_{1,k}^{(2)}$ 1*,k* are adjacent, i.e., $(D_{1,k}^{(2)} \setminus \{v_0\}) \cup \{v_{4k}\} = D_{k+1,k}^{(1)}$. By $(A'1)$ and $(A'2)$, $D_{1,k}^{(2)}$ contains the pairs $\{v_{4k-2}, v_{4k-1}\}, \{v_{4k+1}, v_0\}, \{v_2, v_3\}, \text{ so } (D_{1,k}^{(2)} \setminus \{v_0\}) \cup \{v_{4k}\} \text{ is a } \gamma_{pr}(C_{4k+2})\text{-set}$ containing the pairs $\{v_{4k-2}, v_{4k-1}\}, \{v_{4k}, v_{4k+1}\}.$ Since $D_{k+1,k}^{(1)}$ also contains these two pairs, $(D_{1,k}^{(2)} \setminus \{v_0\}) \cup \{v_{4k}\} = D_{k+1,k}^{(1)}$ by Lemma 3.4(2).

We next find all neighbors in $D^{(2)}$ of the other $\gamma_{pr}(C_{4k+2})$ -sets in $D^{(1)}$. We show that $D_{x,k}^{(1)}$ is adjacent to $D_{1,x-1}^{(2)}$ for all $x \in \{1,2,\ldots,k\}$. Recall that for all $x, y \in \{1, 2, \ldots, k\}$ with $x - y \leq 1$, $D_{x,y}^{(1)}$ contains the pair $\{v_{4k}, v_{4k+1}\}$ but not v_{4k-1}, v_0 . Note that $D_{x,y}^{(1)}$ is adjacent to some set in $D^{(2)}$ if and only if $(D_{x,y}^{(1)} \setminus \{v_{4k}\}) \cup \{v_0\}$ is a $\gamma_{pr}(C_{4k+2})$ -set. By $(A'1)$, if $y \neq k$, then $D_{x,y}^{(1)}$ contains the pairs $\{v_{4k-4}, v_{4k-3}\},$ $\{v_{4k}, v_{4k+1}\}\$, so $(D_{x,y}^{(1)} \setminus \{v_{4k}\}) \cup \{v_0\}$ is not a dominating set. By $(A'1)$ and $(A'2)$, $D_{1,k}^{(1)}$ contains the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k}, v_{4k+1}\}, \{v_1, v_2\}, \text{ and } D_{2,k}^{(1)}, D_{3,k}^{(1)}, \ldots, D_{k,k}^{(1)}$
contain the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k}, v_{4k+1}\}, \{v_2, v_3\}.$ For each $x \in \{1, 2, \ldots, k\},$ let $D_x = (D_{x,k}^{(1)} \setminus \{v_{4k}\}) \cup \{v_0\}$, so D_x is a $\gamma_{pr}(C_{4k+2})$ -set, and these D_x 's form a path with *k* vertices in $D^{(2)}$. Note that D_1 contains the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k+1}, v_0\}, \{v_1, v_2\},$ and D_2, D_3, \ldots, D_k contain the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k+1}, v_0\}, \{v_2, v_3\}.$ By $(A'4)$, $D_{1,0}^{(2)}$ is the only $\gamma_{pr}(C_{4k+2})$ -set in $D^{(2)}$ containing the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k+1}, v_0\}$, $\{v_1, v_2\}$, and by $(A'1)$, $(A'2)$, $D_{1,1}^{(2)}$, $D_{1,2}^{(2)}$, ..., $D_{1,k-1}^{(2)}$ are the only $\gamma_{pr}(C_{4k+2})$ -sets in *D*⁽²⁾ containing the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k+1}, v_0\}, \{v_2, v_3\},$ and they also form a path with *k* vertices in $D^{(2)}$. Then we can conclude that for all $x \in \{1, 2, \ldots, k\}$, $D_x = D_{1,x-1}^{(2)}$, implying that $D_{x,k}^{(1)}$ is adjacent to $D_{1,x-1}^{(2)}$. To sum up, $D_{x,k}^{(1)}$ is adjacent to $D_{1,x-1}^{(2)}$ for all $x \in \{1,2,\ldots,k+1\}$. Similarly, for all $i \in \{2,3\}$, we get $D_{x,k}^{(i)}$ is adjacent to $D_{1,x-1}^{(i+1)}$ for all $x \in \{1,2,\ldots,k+1\}$.

Now, all $\gamma_{pr}(\tilde{C}_{4k+2})$ -sets and edges form a loopgrid LG_{k+1} in $PD_{\gamma}(C_{4k+2})$. Then we only need to show that there is no more edge in $PD_{\gamma}(C_{4k+2})$. We first consider all edges between a set in

$$
\widehat{D}^{(1)} = D^{(1)} - D^{(1)}_{1,0}
$$

and a set in

$$
\widehat{D}^{(3)} = D^{(3)} - D^{(3)}_{k+1,k}
$$

since $D_{1,0}^{(1)} = D_{k+1,k}^{(3)}$. Note that each set in $\widehat{D}^{(1)}$ contains either the pairs $\{v_{4k}, v_{4k+1}\},$ $\{v_1, v_2\}$, or the pairs $\{v_{4k}, v_{4k+1}\}$, $\{v_2, v_3\}$ while every set in $\widehat{D}^{(3)}$ contains the pair $\{v_0, v_1\}$ but not $\{v_{4k}, v_{4k+1}\}\$. Hence, there is no edge between a set in $\widehat{D}^{(1)}$ and a set in $\hat{D}^{(3)}$. Similarly, there is no edge between a set in $D^{(2)} - D_{1,0}^{(2)}$ and a set in

 $D^{(4)} - D_{k+1,k}^{(4)}$. Recall that $D_{1,y}^{(1)} = D_{y,k}^{(4)}$ for all $y \in \{1,2,\ldots,k\}$. Also, $D_{1,0}^{(1)} = D_{k+1,k}^{(3)}$, which has a neighbor in $D^{(4)}$. Thus, we consider all edges between a set in

$$
\widetilde{D}^{(1)} = D^{(1)} - \{D_{1,y}^{(1)} : 0 \le y \le k\}
$$

and a set in

$$
\widetilde{D}^{(4)} = D^{(4)} - \{D_{y,k}^{(4)} : 1 \le y \le k\}.
$$

Note that each set in $\widetilde{D}^{(1)}$ contains the pairs $\{v_{4k}, v_{4k+1}\}, \{v_2, v_3\}$ while each set in $\widetilde{D}^{(4)}$ contains the pair $\{v_1, v_2\}$ but not $\{v_{4k}, v_{4k+1}\}$. Hence, there is no edge between a set in $\widetilde{D}^{(1)}$ and a set in $\widetilde{D}^{(4)}$. This completes the proof. a set in $\widetilde{D}^{(1)}$ and a set in $\widetilde{D}^{(4)}$. This completes the proof.

For any positive integer *k*, let G_1 : $u_1u_2u_3\cdots u_{2k}$, G_2 : $v_1v_2v_3\cdots v_{2k}$, and $G_3: w_1w_2w_3\cdots w_{2k+1}$ be three paths with $2k$, $2k$, and $2k+1$ vertices, respectively. We define a *loopbox* of size k , denoted by LB_k , as the graph with the vertex set

$$
V(LB_k) = \{(u_x, v_y, w_z) \in V(G_1 \square G_2 \square G_3) : 1 \le x, y \le 2k, 1 \le z \le 2k+1, 0 \le y - x \le k, -1 \le y - z \le k-1, 0 \le z - x \le k\},\
$$

and the edge set

$$
E(LB_k) = E(G_1 \Box G_2 \Box G_3) \cup \{(u_x, v_{x+k-1}, w_x)(u_x, v_{x+k}, w_{x+1}) : 1 \le x \le k\}
$$

$$
\cup \{(u_1, v_1, w_1)(u_{k+1}, v_{2k}, w_{k+1})\}
$$

$$
\cup \{(u_x, v_x, w_{x+1})(u_{x+1}, v_{x+1}, w_{x+1}) : 1 \le x \le 2k - 1\}
$$

$$
\cup \{(u_1, v_k, w_{k+1})(u_{2k}, v_{2k}, w_{2k+1})\}
$$

$$
\cup \{(u_x, v_{x+k}, w_{x+k})(u_{x+1}, v_{x+k}, w_{x+k+1}) : 1 \le x \le k\}
$$

$$
\cup \{(u_1, v_y, w_z)(u_{z+k}, v_{2k}, w_{y+k+1}) : 1 \le y, z \le k, -1 \le y - z \le k - 1\}.
$$

For example, the loopboxes of size 1, 2, and 3 are shown in Figures 12, 13, and 14, respectively, where we write (x, y, z) as (u_x, v_y, w_z) .

Lemma 3.6. *Let* $k \geq 2$ *be an integer.*

- (1) *Each* $\gamma_{pr}(C_{4k+1})$ -set cannot contain any six or more consecutive vertices.
- (2) *For any fixed four consecutive vertices in* C_{4k+1} *, there are* $k \gamma_{pr}(C_{4k+1})$ *-sets containing them, and each set is a union of a* $\gamma_{pr}(P_{4k-5})$ -set and a set of these *four vertices.*

Proof. Similar to 3.4(1), we can easily prove the first claim. Next, without loss of generality, we assume the four vertices are v_1, v_2, v_3, v_4 . Then these four vertices dominate six vertices in C_{4k+1} . Note that $\gamma_{pr}(C_{4k+1}) = 2k+2$, so the other $2k-2$ vertices must dominate all vertices in $P_{4k-5}(v_6 : v_{4k})$. Since

$$
\gamma_{pr}(P_{4k-5}(v_6: v_{4k})) = 2k - 2,
$$

these $2k - 2$ vertices form a $\gamma_{pr}(P_{4k-5}(v_6 : v_{4k}))$ -set. Hence, each such $\gamma_{pr}(C_{4k+1})$ -set is a union of a $\gamma_{pr}(P_{4k-5}(v_6 : v_{4k}))$ -set and $\{v_1, v_2, v_3, v_4\}$. By Theorem 2.6, there are $k \gamma_{rr}(P_{4k-5}(v_6 : v_{4k}))$ -sets, so the claim follows. are $k \gamma_{pr}(P_{4k-5}(v_6 : v_{4k}))$ -sets, so the claim follows.

Fig. 12. The loopbox of size 1

Fig. 13. The loopbox of size 2

Fig. 14. The loopbox of size 3

Theorem 3.7. *Let* $k \geq 1$ *be an integer. Then* $PD_{\gamma}(C_{4k+1}) \cong LB_k$ *.*

Proof. Figure 1 shows that

$$
PD_{\gamma}(C_5) \cong K_5 \cong LB_1.
$$

For $k = 2$, we have

$$
PD_{\gamma}(C_9)\cong LB_2
$$

(see Figure 13), where

Let $k \geq 3$. Since each $\gamma_{pr}(C_{4k+1})$ -set must dominate the vertex v_0 , it contains either the pair $\{v_{4k-1}, v_{4k}\}, \{v_{4k}, v_0\}, \{v_0, v_1\}, \text{ or } \{v_1, v_2\}.$ We first find all $\gamma_{pr}(C_{4k+1})$ -sets containing the pair $\{v_{4k-1}, v_{4k}\}$. By Lemma 3.6(1), such a $\gamma_{pr}(C_{4k+1})$ -set must satisfy one of the following:

- (i) it contains the pair $\{v_{4k-1}, v_{4k}\}$ but not v_{4k-2}, v_0 ,
- (ii) it contains the pairs $\{v_{4k-3}, v_{4k-2}\}\$ and $\{v_{4k-1}, v_{4k}\}\$,
- (iii) it contains the pairs $\{v_{4k-1}, v_{4k}\}\$ and $\{v_0, v_1\}.$

Note that each $\gamma_{pr}(C_{4k+1})$ -set containing the pair $\{v_{4k-1}, v_{4k}\}$ but not v_{4k-2}, v_0 is a union of a $\gamma_{pr}(P_{4k-3}(v_1 : v_{4k-3}))$ -set and $\{v_{4k-1}, v_{4k}\}$. By Theorem 2.9, we have

$$
PD_{\gamma}(P_{4k-3}(v_1: v_{4k-3})) \cong SG_{k,k,k-1}.
$$

For all $x, y \in \{1, 2, \ldots, k\}$ and $z \in \{1, 2, \ldots, k-1\}$ with $x - y \le 0, x - z \le 1, y - z \ge 0$, let $B_{x,y,z}^{(1)}$ be the $\gamma_{pr}(P_{4k-3}(v_1 : v_{4k-3}))$ -set at the position (x, y, z) in $SG_{k,k,k-1}$, and let

$$
D^{(1)}_{x,y,z} = B^{(1)}_{x,y,z} \cup \{v_{4k-1}, v_{4k}\}.
$$

Thus $D_{x,y,z}^{(1)}$'s are the only $\gamma_{pr}(C_{4k+1})$ -sets containing the pair $\{v_{4k-1}, v_{4k}\}$ but not v_{4k-2}, v_0 , and they also form a stepgrid $SG_{k,k,k-1}$ in $PD_\gamma(C_{4k+1})$. By Lemma 2.4, without loss of generality, we may assume that $B_{x,k,z}^{(1)}$ contains the pair $\{v_{4k-4}, v_{4k-3}\}.$

By Corollary 2.10 (B1.1), the set $B_{x,k}^{(1)}$ $\{v_{4k-7}, v_{4k-6}\}\,$, contains the pairs $\{v_{4k-7}, v_{4k-6}\}\,$ $\{v_{4k-4}, v_{4k-3}\}\$ for all $x \in \{1, 2, \ldots, k-1\}$, and $B_{k,k}^{(1)}$ $k, k, k-1$ contains the pairs {*v*4*k*−6*, v*4*k*−5}, {*v*4*k*−4*, v*4*k*−3}. For each *x* ∈ {1*,* 2*, . . . , k*}, let

$$
D_{x,k,k}^{(1)} = (D_{x,k,k-1}^{(1)} \setminus \{v_{4k-4}\}) \cup \{v_{4k-2}\}.
$$

By Lemma 3.6(2), these $D_{x,k,k}^{(1)}$'s are the only $\gamma_{pr}(C_{4k+1})$ -sets containing the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k-1}, v_{4k}\}.$ By Corollary 2.10 (B2.1), the set $B_{1,1,1}^{(1)}$ contains the pairs $\{v_1, v_2\}, \{v_3, v_4\}, \text{and } B_{1,y,1}^{(1)} \text{ contains the pairs } \{v_1, v_2\}, \{v_4, v_5\} \text{ for all } y \in \{2, 3, \ldots, k\}.$ For each $y \in \{1, 2, ..., k\}$, let

$$
D_{1,y,0}^{(1)} = (D_{1,y,1}^{(1)} \setminus \{v_2\}) \cup \{v_0\}.
$$

By Lemma 3.6(2), these $D_{1,y,0}^{(1)}$'s are the only $\gamma_{pr}(C_{4k+1})$ -sets containing the pairs $\{v_{4k-1}, v_{4k}\}, \{v_0, v_1\}$. Therefore, all $D_{x,y,z}^{(1)}$'s form the graph, named $D^{(1)}$, in $PD_{\gamma}(C_{4k+1})$ as shown in Figure 15.

Similarly, we can construct all $\gamma_{pr}(C_{4k+1})$ -sets as follows (the subscripts of all vertices are modulo $4k + 1$: for all $x, y \in \{1, 2, ..., k\}$ and $z \in \{1, 2, ..., k - 1\}$ with *x* − *y* ≤ 0, *x* − *z* ≤ 1, *y* − *z* ≥ 0, and for each *i* ∈ {1*,* 2*,* 3*,* 4},

$$
D_{x,y,z}^{(i)} = B_{x,y,z}^{(i)} \cup \{v_{4k-2+i}, v_{4k-1+i}\},\,
$$

where $B_{x,y,z}^{(i)}$ is a $\gamma_{pr}(P_{4k-3}(v_i : v_{4k-4+i}))$ -set,

$$
D_{x,k,k}^{(i)} = (D_{x,k,k-1}^{(i)} \setminus \{v_{4k-5+i}\}) \cup \{v_{4k-3+i}\},
$$

$$
D_{1,y,0}^{(i)} = (D_{1,y,1}^{(i)} \setminus \{v_{i+1}\}) \cup \{v_{i-1}\}.
$$

We get that these $D_{x,y,z}^{(i)}$'s are the only $\gamma_{pr}(C_{4k+1})$ -sets containing the pair $\{v_{4k-2+i}, v_{4k-1+i}\}$, and they form the graph $D^{(i)}$ (see Figure 15) in $PD_{\gamma}(C_{4k+1})$. By Lemma 2.4, without loss of generality, we may assume that $B_{x,k,z}^{(i)}$ contains the pair $\{v_{4k-5+i}, v_{4k-4+i}\}$, and then we get the following properties.

- (B'1) Let $x \in \{1, 2, ..., k\}$ and $z \in \{0, 1, ..., k-1\}$. If $y = k$, then $D_{x,y,z}^{(i)}$ contains the pairs $\{v_{4k-5+i}, v_{4k-4+i}\}, \{v_{4k-2+i}, v_{4k-1+i}\};$ otherwise, it contains the pairs $\{v_{4k-6+i}, v_{4k-5+i}\}, \{v_{4k-2+i}, v_{4k-1+i}\}.$
	- $(B'1.1) D^{(i)}_{x,l}$ $\{v_{4k-8+i}, v_{4k-7+i}\}, \{v_{4k-5+i}, v_{4k-7+i}\}, \{v_{4k-5+i}, v_{4k-4+i}\},$ $\{v_{4k-2+i}, v_{4k-1+i}\}\)$ for all $x \in \{1, 2, \ldots, k-1\}$, and $D_{k,i}^{(i)}$ $\chi_{k,k,k-1}^{(i)}$ contains the pairs $\{v_{4k-7+i}, v_{4k-6+i}\}, \{v_{4k-5+i}, v_{4k-4+i}\}, \{v_{4k-2+i}, v_{4k-1+i}\}.$
	- $(B'1.2)$ if $z \neq k-1$, then $D_{x,k,z}^{(i)}$ contains the pairs $\{v_{4k-9+i}, v_{4k-8+i}\},$ $\{v_{4k-5+i}, v_{4k-4+i}\}, \{v_{4k-2+i}, v_{4k-1+i}\}.$
- (B'2) Let $y \in \{1, 2, \ldots, k\}$ and $z \in \{1, 2, \ldots, k\}$. If $x = 1$, then $D_{x,y,z}^{(i)}$ contains the pairs $\{v_{4k-2+i}, v_{4k-1+i}\}, \{v_i, v_{i+1}\};$ otherwise, it contains the pairs $\{v_{4k-2+i}, v_{4k-1+i}\}, \{v_{i+1}, v_{i+2}\}.$

- $(Dⁱ2.1)$ $Dⁱ_{1,1,1}$ contains the pairs $\{v_{4k-2+i}, v_{4k-1+i}\}, \{v_i, v_{i+1}\}, \{v_{i+2}, v_{i+3}\},$ $D_{1,y,1}^{(i)}$ contains the pairs $\{v_{4k-2+i}, v_{4k-1+i}\}, \{v_i, v_{i+1}\}, \{v_{i+3}, v_{i+4}\}$ for all $y \in \{2, 3, \ldots, k\}.$
- $(B'2.2)$ If $z \neq 1$, then $D_{1,y,z}^{(i)}$ contains the pairs $\{v_{4k-2+i}, v_{4k-1+i}\}, \{v_i, v_{i+1}\},$ $\{v_{i+4}, v_{i+5}\}.$
- (B'3) $D_{1,k,k}^{(i)}, D_{2,k,k}^{(i)}, \ldots, D_{k,k,k}^{(i)}$ are the only $\gamma_{pr}(C_{4k+1})$ -sets in $D^{(i)}$ containing the $\text{pairs } \{v_{4k-4+i}, v_{4k-3+i}\}, \{v_{4k-2+i}, v_{4k-1+i}\}.$
	- (B'3.1) $D_{1,k,k}^{(i)}$ contains the pair $\{v_i, v_{i+1}\}$, and the others contain the pair $\{v_{i+1}, v_{i+2}\}.$
	- (B'3.2) $D_{k,k,k}^{(i)}$ contains the pair $\{v_{4k-7+i}, v_{4k-6+i}\}$, and the others contain the pair $\{v_{4k-8+i}, v_{4k-7+i}\}.$
- (B'4) $D_{1,1,0}^{(i)}, D_{1,2,0}^{(i)}, \ldots, D_{1,k,0}^{(i)}$ are the only $\gamma_{pr}(C_{4k+1})$ -sets in $D^{(i)}$ containing the pairs $\{v_{4k-2+i}, v_{4k-1+i}\}, \{v_{i-1}, v_i\}.$
	- (B'4.1) $D_{1,1,0}^{(i)}$ contains the pair $\{v_{i+2}, v_{i+3}\}\)$, and the others contain the pair $\{v_{i+3}, v_{i+4}\}.$
	- $(B'4.2) D_{1,k}^{(i)}$ $\mathbb{1}_{1,k,0}^{(i)}$ contains the pair $\{v_{4k-5+i}, v_{4k-4+i}\}\$, and the others contain the $\text{pair } \{v_{4k-6+i}, v_{4k-5+i}\}.$

Note that $D^{(1)}$ and $D^{(2)}$ cannot have any common vertices in $PD_{\gamma}(C_{4k+1})$ since otherwise there is a $\gamma_{pr}(C_{4k+1})$ -set containing the pairs $\{v_{4k-1}, v_{4k}\}\$ and $\{v_{4k}, v_0\}$, which is impossible. Similarly, $D^{(i)}$ and $D^{(i+1)}$ do not share any vertices in $PD_{\gamma}(C_{4k+1})$ for all $i \in \{2, 3\}.$

Then we consider all $\gamma_{pr}(C_{4k+1})$ -sets that are in both $D^{(1)}$ and $D^{(3)}$. Then these sets must contain the pairs $\{v_{4k-1}, v_{4k}\}, \{v_0, v_1\}$. By (B'4) and (B'4.2), $D_{1,1,0}^{(1)}$, $D_{1,2,0}^{(1)}$, ..., $D_{1,k,0}^{(1)}$ are the only $\gamma_{pr}(C_{4k+1})$ -sets in $D^{(1)}$ containing the pairs ${v_{4k-1}, v_{4k}, \{v_0, v_1\}, \text{and } D_{1,k}^{(1)}$ 1*,k,*0 contains the pair {*v*⁴*k*−⁴*, v*⁴*k*−³}. By (B′3) and (B′3.2), $D_{1,k,k}^{(3)}, D_{2,k,k}^{(3)}, \ldots, D_{k,k,k}^{(3)}$ are the only $\gamma_{pr}(C_{4k+1})$ -sets in $D^{(3)}$ containing the pairs ${v_{4k-1}, v_{4k}}$, ${v_0, v_1}$, and $D_{k,k,k}^{(3)}$ contains the pair ${v_{4k-4}, v_{4k-3}}$. By Lemma 3.6(2), for each $y \in \{1, 2, \ldots, k\}$, we have

$$
D_{1,y,0}^{(1)} = T_{1,y,0}^{(1)} \cup \{v_{4k-1}, v_{4k}, v_0, v_1\},\
$$

where $T_{1,y,0}^{(1)}$ is a $\gamma_{pr}(P_{4k-5}(v_3 : v_{4k-3}))$ -set, and

$$
D_{y,k,k}^{(3)} = T_{y,k,k}^{(3)} \cup \{v_{4k-1}, v_{4k}, v_0, v_1\},\
$$

where $T_{y,k,k}^{(3)}$ is a $\gamma_{pr}(P_{4k-5}(v_3 : v_{4k-3}))$ -set. Since $D_{1,k}^{(1)}$ $L_{1,k,0}^{(1)}$ and $D_{k,k,k}^{(3)}$ contain the pair $\{v_{4k-4}, v_{4k-3}\},$ so do $T_{1,k}^{(1)}$ $T_{1,k,0}^{(1)}$ and $T_{k,k,k}^{(3)}$. By Lemma 2.2, $T_{1,k,0}^{(1)} = T_{k,k,k}^{(3)}$. By Theorem 2.6, for each $y \in \{1, 2, \ldots, k\}$, we have $T_{1,y,0}^{(1)} = T_{y,k,k}^{(3)}$, and hence $D_{1,y,0}^{(1)} = D_{y,k,k}^{(3)}$. Similarly, we get $D_{1,y,0}^{(2)} = D_{y,k,k}^{(4)}$ for all $y \in \{1,2,\ldots,k\}.$

We next consider all $\gamma_{pr}(C_{4k+1})$ -sets, which are in both $D^{(1)}$ and $D^{(4)}$. Then these sets must contain the pairs $\{v_{4k-1}, v_{4k}\}, \{v_1, v_2\}$. By (B'2), for all $y, z \in \{1, 2, \ldots, k\}$,

all $D_{1,y,z}^{(1)}$'s are the only $\gamma_{pr}(C_{4k+1})$ -sets in $D^{(1)}$ containing the pairs $\{v_{4k-1}, v_{4k}\},\$ $\{v_1, v_2\}$, and they form the left graph in Figure 16. By (B'1), for all $x \in \{1, 2, \ldots, k\}$ and $z \in \{0, 1, \ldots, k-1\}$, all $D_{x,k,z}^{(4)}$'s are the only $\gamma_{pr}(C_{4k+1})$ -sets in $D^{(4)}$ containing the pairs $\{v_{4k-1}, v_{4k}\}, \{v_1, v_2\},$ and they form the right graph in Figure 16. To show that $D_{1,y,z}^{(1)} = D_{z,k}^{(4)}$ $z, k, y-1$ for all $y, z \in \{1, 2, \ldots, k\}$ with $y-z \geq 0$, it suffices to show that $D_{1,k,k}^{(1)} = D_{k,k}^{(4)}$ $E_{k,k,k-1}^{(4)}$. By (B'3.1), $D_{1,k,k}^{(1)}$ contains the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k-1}, v_{4k}\},\$ $\{v_1, v_2\}$. By (B'1.1), $D_{k,k}^{(4)}$ $k, k, k-1$ contains these three pairs as well. By Lemma 3.6(2), we have

$$
D_{1,k,k}^{(1)} = T_{1,k,k}^{(1)} \cup \{v_{4k-3}, v_{4k-2}, v_{4k-1}, v_{4k}\}
$$

and

$$
D_{k,k,k-1}^{(4)} = T_{k,k,k-1}^{(4)} \cup \{v_{4k-3}, v_{4k-2}, v_{4k-1}, v_{4k}\},\
$$

where $T^{(1)}_{1,k,k}$ and $T^{(4)}_{k,k}$ $\chi_{k,k,k-1}^{(4)}$ are $\gamma_{pr}(P_{4k-5}(v_1 : v_{4k-5}))$ -sets containing the pair $\{v_1, v_2\}.$ By Lemma 2.2, we get $T_{1,k,k}^{(1)} = T_{k,k}^{(4)}$ $b_{k,k,k-1}^{(4)}$, and thus $D_{1,k,k}^{(1)} = D_{k,k}^{(4)}$ *k,k,k*−1 .

Fig. 16. The $\gamma_{pr}(C_{4k+1})$ -sets containing the pairs $\{v_{4k-1}, v_{4k}\}\$ and $\{v_1, v_2\}$

Next, we consider all edges between a set in $D^{(1)}$ and a set in $D^{(2)}$. We first find all neighbors of $D_{1,y,0}^{(1)}$ in $D^{(2)}$ for each $y \in \{1,2,\ldots,k\}$. We show that $D_{1,1,0}^{(1)}$ is adjacent to $D_{k,k,k}^{(2)}$, and $D_{1,k}^{(1)}$ ⁽¹⁾_{1,1,0}</sub> is adjacent to $D_{1,1,0}^{(2)}$. By (B'4), (B'4.1), (B'4.2), $D_{1,1,0}^{(1)}$ contains the pairs $\{v_{4k-5}, v_{4k-4}\}, \{v_{4k-1}, v_{4k}\}, \{v_0, v_1\}, \{v_3, v_4\},\$ the set $D_{1,y,0}^{(1)}$ contains the pairs {*v*⁴*k*−⁵*, v*⁴*k*−⁴}, {*v*⁴*k*−¹*, v*⁴*k*}, {*v*0*, v*1}, {*v*4*, v*5} for each *y* ∈ {2*,* 3*, . . . , k*−1}, and *D* (1) 1*,k,*0 contains the pairs $\{v_{4k-4}, v_{4k-3}\}, \{v_{4k-1}, v_{4k}\}, \{v_0, v_1\}, \{v_4, v_5\}.$ Since each set in $D^{(2)}$ contains the pair $\{v_{4k}, v_0\}$, the set $D_{1,y,0}^{(1)}$ is adjacent to some set in $D^{(2)}$ if and only if $(D_{1,y,0}^{(1)} \setminus \{v_1\}) \cup \{v_{4k-2}\}$ or $(D_{1,y,0}^{(1)} \setminus \{v_{4k-1}\}) \cup \{v_2\}$ is a $\gamma_{pr}(C_{4k+1})$ -set. We have $(D_{1,1,0}^{(1)} \setminus \{v_4\})$ ${v_1}$)∪{ v_{4k-2} } is a $\gamma_{pr}(C_{4k+1})$ -set, but $(D_{1,y,0}^{(1)} \setminus \{v_1\}) \cup \{v_{4k-2}\}$ is not if $y \neq 1$. Note that $(D_{1,1,0}^{(1)} \setminus \{v_1\}) \cup \{v_{4k-2}\}\$ contains the pairs $\{v_{4k-5}, v_{4k-4}\}, \{v_{4k-2}, v_{4k-1}\}, \{v_{4k}, v_0\}.$ By (B'3.2), $D_{k,k,k}^{(2)}$ also contains these three pairs. By Lemma 2.2 and 3.6(2), we get

 $(D_{1,1,0}^{(1)} \setminus \{v_1\}) \cup \{v_{4k-2}\}\$ and $D_{k,k,k}^{(2)}$ are unions of a unique $\gamma_{pr}(P_{4k-5}(v_2 : v_{4k-4}))$ -set containing the pair $\{v_{4k-5}, v_{4k-4}\}$ and $\{v_{4k-2}, v_{4k-1}, v_{4k}, v_0\}$. Hence,

$$
(D_{1,1,0}^{(1)} \setminus \{v_1\}) \cup \{v_{4k-2}\} = D_{k,k,k}^{(2)},
$$

that is, $D_{1,1,0}^{(1)}$ is adjacent to $D_{k,k,k}^{(2)}$. Moreover, we see that $(D_{1,k}^{(1)}$ $\{v_{4k-1}\}\cup\{v_2\}$ is a $\gamma_{pr}(C_{4k+1})$ -set, but $(D_{1,y,0}^{(1)} \setminus \{v_{4k-1}\}) \cup \{v_2\}$ is not if $y \neq k$. Note that $(D_{1,k}^{(1)}$ $\{v_{1k,0} \setminus \{v_{4k-1}\}\}\cup \{v_2\}$ contains the pairs $\{v_{4k}, v_0\}$, $\{v_1, v_2\}$, $\{v_4, v_5\}$. By (B[']4), $D_{1,1,0}^{(2)}$ also contains these three pairs. By Lemmas 3.6(2) and 2.2, we have $(D_{1,k}^{(1)}$ $\{v_{1,k,0}\setminus\{v_{4k-1}\}\}\cup\{v_2\} = D_{1,1,0}^{(2)}$, that is, $D_{1,k}^{(1)}$ $_{1,k,0}^{(1)}$ is adjacent to $D_{1,1,0}^{(2)}$.

We next find all neighbors of $D_{x,k,k}^{(1)}$ in $D^{(2)}$ for each $x \in \{1, 2, \ldots, k\}$. We claim that $D_{x,k,k}^{(1)}$ is adjacent to $D_{1,k}^{(2)}$ $1, k, x-1$ for each $x \in \{1, 2, ..., k\}$, and $D_{k,k,k}^{(1)}$ is adjacent to $D_{1,k,k}^{(2)}$. By (B'3), (B'3.1), (B'3.2), $D_{1,k,k}^{(1)}$ contains the pairs $\{v_{4k-7}, v_{4k-6}\}, \{v_{4k-3}, v_{4k-2}\},$ ${v_{4k-1}, v_{4k}, \{v_1, v_2\}, \text{ the set } D_{x,k,k}^{(1)}$ contains the pairs ${v_{4k-7}, v_{4k-6}, \{v_{4k-3}, v_{4k-2}\},$ $\{v_{4k-1}, v_{4k}\}, \{v_2, v_3\}$ for each $x \in \{2, 3, ..., k-1\}$, and $D_{k,k,k}^{(1)}$ contains the pairs {*v*⁴*k*−⁶*, v*⁴*k*−⁵}, {*v*⁴*k*−³*, v*⁴*k*−²}, {*v*⁴*k*−¹*, v*⁴*k*}, {*v*2*, v*3}. Note that *D* (1) *x,k,k* is adjacent to some set in $D^{(2)}$ if and only if $(D_{x,k,k}^{(1)} \setminus \{v_{4k-1}\}) \cup \{v_0\}$ or $(D_{x,k,k}^{(1)} \setminus \{v_{4k-3}\}) \cup \{v_0\}$ is a $\gamma_{pr}(C_{4k+1})$ -set. We have $(D_{x,k,k}^{(1)} \setminus \{v_{4k-1}\}) \cup \{v_0\}$ is a $\gamma_{pr}(C_{4k+1})$ -set for each *x* ∈ {1, 2, ..., *k*}, and then we let $N_x = (D_{x,k,k}^{(1)} \setminus \{v_{4k-1}\}) \cup \{v_0\}$. Note that *N*₁ contains the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k}, v_0\}, \{v_1, v_2\}, \text{ and } N_2, N_3, \ldots, N_k \text{ con-}$ tain the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k}, v_0\}, \{v_2, v_3\}, \text{ and they form a path with } k \text{ ver-}$ tices in $D^{(2)}$. By (B'4.2), we have $D^{(2)}_{1,k}$ $\gamma_{p}(2)$ is the only $\gamma_{p}(C_{4k+1})$ -set in $D^{(2)}$ containing the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k}, v_0\}, \{v_1, v_2\}, \text{ and by (B'1) and (B'2)}, \text{ we have that } D^{(2)}(2) = D^{(2)}(2)$ have that $D_{1,k,1}^{(2)}, D_{1,k,2}^{(2)}, \ldots, D_{1,k,k-1}^{(2)}$ are the only $\gamma_{pr}(C_{4k+1})$ -sets in $D^{(2)}$ containing the pairs $\{v_{4k-3}, v_{4k-2}\}, \{v_{4k}, v_0\}, \{v_2, v_3\}, \text{ and they form a path with } k \text{ vertices}$ in $D^{(2)}$. Then we can conclude that for each $x \in \{1, 2, ..., k\}$, $N_x = D_{1,k}^{(2)}$ 1*,k,x*−1 , which means $D_{x,k,k}^{(1)}$ is adjacent to $D_{1,k}^{(2)}$ (2) _{1,*k*,*x*−1}. Moreover, $(D_{k,k,k}^{(1)} \setminus \{v_{4k-3}\}) \cup \{v_0\}$ is a $\gamma_{pr}(C_{4k+1})$ -set, but $(D_{x,k,k}^{(1)} \setminus \{v_{4k-3}\}) \cup \{v_0\}$ is not if $x \neq k$. Note that $(D_{k,k,k}^{(1)} \setminus \{v_{4k-3}\}) \cup \{v_0\}$ contains the pairs $\{v_{4k-2}, v_{4k-1}\}, \{v_{4k}, v_0\}, \{v_2, v_3\}.$ By (B'3.1), $D_{1,k,k}^{(2)}$ also contains these three pairs. By Lemmas 3.6(2) and 2.2, we get $(D_{k,k,k}^{(1)} \setminus \{v_{4k-3}\}) \cup \{v_0\} = D_{1,k,k}^{(2)}$, that is, $D_{k,k,k}^{(1)}$ is adjacent to $D_{1,k,k}^{(2)}$.

Last but not least, we find all neighbors in $D^{(2)}$ of the other $\gamma_{pr}(C_{4k+1})$ -sets in $D^{(1)}$. We prove that $D^{(1)}_{x,k,z}$ is adjacent to $D^{(2)}_{1,z,x-1}$ for all $x \in \{1,2,\ldots,k\}$, $z \in \{1, 2, \ldots, k-1\}$. Recall that for all $x, y \in \{1, 2, \ldots, k\}, z \in \{1, 2, \ldots, k-1\}$, $D_{x,y,z}^{(1)}$ contains the pair $\{v_{4k-1}, v_{4k}\}$ but not v_{4k-2}, v_0 . Then $D_{x,y,z}^{(1)}$ is adjacent to some set in $D^{(2)}$ if and only if $(D^{(1)}_{x,y,z} \setminus \{v_{4k-1}\}) \cup \{v_0\}$ is a $\gamma_{pr}(C_{4k+1})$ -set. By $(B'1)$, $D^{(1)}_{x,y,z}$ contains the pairs $\{v_{4k-5}, v_{4k-4}\}, \{v_{4k-1}, v_{4k}\}$ for all $y \neq k$, so $(D_{x,y,z}^{(1)} \setminus \{v_{4k-1}\}) \cup \{v_0\}$ is not a dominating set. By (B'1) and (B'2), for all $z \in \{1, 2, \ldots, k-1\}$, we have

 $D_{1,k,z}^{(1)}$ contains the pairs $\{v_{4k-4}, v_{4k-3}\}, \{v_{4k-1}, v_{4k}\}, \{v_1, v_2\}, \text{ and } D_{x,k,z}^{(1)}$ contains the $\text{pairs } \{v_{4k-4}, v_{4k-3}\}, \{v_{4k-1}, v_{4k}\}, \{v_2, v_3\} \text{ for all } x \neq 1. \text{ For all } x \in \{1, 2, \ldots, k\} \text{ and }$ $z \in \{1, 2, \ldots, k-1\}$, let $D_{x,z} = (D_{x,k,z}^{(1)} \setminus \{v_{4k-1}\}) \cup \{v_0\}$, so $D_{x,z}$ is a $\gamma_{pr}(C_{4k+1})$ -set in $D^{(2)}$, and these $D_{x,z}$'s form the graph shown in Figure 17. Note that for all *z* ∈ {1, 2, . . . , *k* − 1}, $D_{1,z}$ contains the pairs {*v*_{4*k*−4}*, v*_{4*k*−3}}, {*v*_{4*k*}*, v*₀}, {*v*₁*, v*₂}, and *D*_{*x,z*} contains the pairs {*v*_{4*k*−4}*, v*_{4*k*−3}}, {*v*_{4*k*}*, v*₀}, {*v*₂*, v*₃} for all *x* ≠ 1. By (B[']4) and $(B'4.2), D_{1,1,0}^{(2)}, D_{1,2,0}^{(2)}, \ldots, D_{1,k-1,0}^{(2)}$ are the only $\gamma_{pr}(C_{4k+1})$ -sets in $D^{(2)}$ containing the pairs $\{v_{4k-4}, v_{4k-3}\}, \{v_{4k}, v_0\}, \{v_1, v_2\}, \text{ and by (B'1) and (B'2)}, \text{ for all }$ $y, z \in \{1, 2, \ldots, k-1\}, D_{1,y,z}^{(2)}$'s are the only $\gamma_{pr}(C_{4k+1})$ -sets in $D^{(2)}$ containing the pairs {*v*4*k*−4*, v*4*k*−3}, {*v*4*k, v*0}, {*v*2*, v*3}, and they form the graph shown in Figure 18. Then the graphs in Figures 17 and 18 are the same, so we can conclude that $D_{x,z} = D_{1,z,x-1}^{(2)}$ for all $x \in \{1, 2, \ldots, k\}, z \in \{1, 2, \ldots, k-1\}$, that is, $D_{x,k,z}^{(1)}$ is adjacent to $D_{1,z,x-1}^{(2)}$.

Fig. 17. The graph in $D^{(2)}$ induced by $D_{x,z}$'s

The results about the edges between a set in $D^{(i)}$ and a set in $D^{(i+1)}$ for all $i \in \{2,3\}$ are the same as the edges between a set in $D^{(1)}$ and a set in $D^{(2)}$. Since $D_{1,1,0}^{(1)} = D_{1,k,k}^{(3)}$, the edges $D_{1,1,0}^{(1)} D_{k,k,k}^{(2)}$ and $D_{k,k,k}^{(2)} D_{1,k,k}^{(3)}$ are the same. Similarly, $D_{1,k,0}^{(1)}D_{1,1,0}^{(2)} = D_{1,1,0}^{(2)}D_{k,k,k}^{(3)}$ and $D_{1,k,0}^{(2)}D_{1,1,0}^{(3)} = D_{1,1,0}^{(3)}D_{k,k,k}^{(4)}$. Now, all $\gamma_{pr}(C_{4k+1})$ -sets and edges form a loopbox LB_k in $PD_\gamma(C_{4k+1})$. Then we need to show that there is no more edge in $PD_{\gamma}(C_{4k+1})$. Recall that $D_{1,y,0}^{(1)} = D_{y,k,k}^{(3)}$ for all $y \in \{1,2,\ldots,k\}$, so we consider all edges between a set in

$$
\widehat{D}^{(1)} = D^{(1)} - \{D^{(1)}_{1,y,0} : 1 \le y \le k\}
$$

and a set in

$$
\widehat{D}^{(3)} = D^{(3)} - \{D_{y,k,k}^{(3)} : 1 \le y \le k\}.
$$

Note that a set in $\hat{D}^{(1)}$ contains either the pairs $\{v_{4k-1}, v_{4k}\}, \{v_1, v_2\}$, or the pairs ${v_{4k-1}, v_{4k}, \{v_2, v_3\}}$ while a set in $\hat{D}^{(3)}$ contains the pair ${v_0, v_1}$ but not ${v_{4k-1}, v_{4k}}$.

Fig. 18. The graph in $D^{(2)}$ induced by $D^{(2)}_{1,y,z}$'s

Thus, there is no edge between a set in $\widehat{D}^{(1)}$ and a set in $\widehat{D}^{(3)}$. Similarly, there is no edge between a set in $D^{(2)} - \{D^{(2)}_{1,y,0} : 1 \le y \le k\}$ and a set in $D^{(4)} - \{D^{(4)}_{y,k,k} : 1 \le y \le k\}$. Recall that $D_{1,y,z}^{(1)} = D_{z,k}^{(4)}$ *z,k,y*−1 for all *y, z* ∈ {1*,* 2*, . . . , k*}. Also, for all *y* ∈ {1*,* 2*, . . . , k*}, $D_{1,y,0}^{(1)} = D_{y,k,k}^{(3)}$, which has a neighbor in $D^{(4)}$. Hence, we consider all edges between a set in

$$
\widetilde{D}^{(1)} = D^{(1)} - \{D_{1,y,z}^{(1)}, D_{1,y,0}^{(1)} : 1 \le y, z \le k\}
$$

and a set in

$$
\widetilde{D}^{(4)}=D^{(4)}-\{D^{(4)}_{z,k,y-1}:1\leq y,z\leq k\}.
$$

Note that a set in $\widetilde{D}^{(1)}$ contains the pairs $\{v_{4k-1}, v_{4k}\}, \{v_2, v_3\}$ while a set in $\widetilde{D}^{(4)}$ contains the pair $\{v_1, v_2\}$ but not $\{v_{4k-1}, v_{4k}\}$. Thus, there is no edge between a set in $\tilde{D}^{(1)}$ and a set in $\tilde{D}^{(4)}$. This completes the proof. in $\widetilde{D}^{(1)}$ and a set in $\widetilde{D}^{(4)}$. This completes the proof.

Acknowledgements

This research was supported by Ph.D. scholarship from Thammasat University, 1/2018.

REFERENCES

- [1] P. Eakawinrujee, N. Trakultraipruk, *γ-paired dominating graphs of paths*, Int. J. Math. Comput. Sci. **17** (2022), no. 2, 739–752.
- [2] G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi, K.R. Hutson, *γ-graphs of graphs*, Discuss. Math. Graph Theory **31** (2011), 517–531.
- [3] R. Haas, K. Seyffarth, *The k-dominating graph*, Graphs Combin. **30** (2014), 609–617.
- [4] T.W. Haynes, P.J. Slater, *Paired-domination in graphs*, Networks **32** (1998), 199–206.
- [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998.
- [6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, New York, 1998.
- [7] S.A. Lakshmanan, A. Vijayakumar, *The gamma graph of a graph*, Graphs Combin. **7** (2010), 53–59.
- [8] R. Samanmoo, N. Trakultraipruk, N. Ananchuen, *γ-independent dominating graphs of paths and cycles*, Maejo Int. J. Sci. Technol. **13(03)** (2019), 245–256.
- [9] D.B. West, *Introduction to Graph Theory*, Prentice Hall, Upper Saddle River, 2001.
- [10] A. Wongsriya, N. Trakultraipruk, *γ-total dominating graphs of paths and cycles*, ScienceAsia **43** (2017), 326–333.

Pannawat Eakawinrujee pannawattong@gmail.com **https://orcid.org/0000-0003-1336-1019**

Department of Mathematics and Statistics Faculty of Science and Technology Thammasat University, Pathum Thani 12120, Thailand

Nantapath Trakultraipruk (corresponding author) n.trakultraipruk@yahoo.com https://orcid.org/0000-0002-2826-0176

Department of Mathematics and Statistics Faculty of Science and Technology Thammasat University, Pathum Thani 12120, Thailand

Received: November 20, 2020. Revised: August 30, 2021. Accepted: December 1, 2021.