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v-PATRED DOMINATING GRAPHS OF CYCLES
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Abstract. A paired dominating set of a graph G is a dominating set whose induced subgraph
contains a perfect matching. The paired domination number, denoted by ~,-(G), is the
minimum cardinality of a paired dominating set of G. A ~,-(G)-set is a paired dominating
set of cardinality vp-(G). The v-paired dominating graph of G, denoted by PD.(G), as the
graph whose vertices are 7y, (G)-sets. Two ~p,,-(G)-sets D1 and Dy are adjacent in PD.(G) if
there exists a vertex u € D1 and a vertex v ¢ D; such that Dy = (D \ {u}) U {v}. In this
paper, we present the y-paired dominating graphs of cycles.
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1. INTRODUCTION

For notation and terminology, we refer the reader to [9]. Let G = (V(G), E(G)) be
a graph with the vertex set V(G) and the edge set E(G). For a vertex v € V(G),
the open neighborhood and closed neighborhood of v are denoted by N(v) and NJv],
respectively. For a set D C V(G), the open neighborhood of D is N(D) = J,cp N(v),
and the closed neighborhood of D is N[D] = N(D) U D. The subgraph of G induced
by D is denoted by G[D]. The vertices in D dominate the vertices in S C V(G) if
S C N[D]. We denote the graph obtained from G by deleting all vertices in D and
all edges incident with them by G — D. A path, a cycle, and a complete graph with n
vertices are denoted by P,,, C,, and K, respectively.

A set D C V(G) is a dominating set of G if N[D] = V(G). The domination
number v(G) is the minimum cardinality of a dominating set of G. A dominating
set of cardinality v(G) is called a v(G)-set. For a detailed literature on domination,
see [5,6].

The gamma graph .G of a graph G, defined by Lakshmanan and Vijayakumar [7],
as the graph whose vertices are v(G)-sets, and v(G)-sets Dy and Ds are adjacent in
~v.G if Dy = (D1 \ {u}) U{v} for some v € D; and v ¢ D;. In 2011, Fricke et al. [2]
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also defined the gamma graph G(v) with different meaning. The only difference is
that two v(G)-sets Dy and Dy are adjacent in G(y) if Do = (D \ {u}) U {v} for some
u € Dy,v ¢ Dy, and uwv € E(G). Notice that G(7y) is a subgraph of .G with the same
vertex set. In 2014, Haas and Seyffarth [3] introduced the k-dominating graph of G,
denoted by Dy (G), as the graph whose vertices are dominating sets of cardinality at
most k. Two dominating sets Dy and Ds are adjacent in Dy (G) if Dy = Dy U {v} for
some v ¢ D;. They gave conditions that ensure Dy (G) is connected.

In 2017, Wongsriya and Trakultraipruk [10] defined the v-total dominating graph
of G, denoted by T'D(G), as the graph whose vertices are 7 (G)-sets, which are total
dominating sets of minimum cardinality. Two 7:(G)-sets D1 and Dy are adjacent in
TD.,(G) if Dy = (D1 \ {u}) U{v} for some u € D; and v ¢ D;. They determined the
~-total dominating graphs of paths and cycles. In 2019, Samanmoo et al. [8] introduced
the v-independent dominating graph of G, denoted by ID~(G), as the graph whose
vertices are y;(G)-sets, which are independent dominating sets of minimum cardinality.
Two v;(G)-sets D1 and D are adjacent in 1D~ (G) if Dy = (D \ {u}) U {v} for some
u € Dy,v ¢ D;. They provided the y-independent dominating graphs of paths and
cycles.

A matching in G is a set of independent edges in G. A perfect matching M in G is
a matching such that every vertex of G is incident to an edge of M. A set D C V(G)
is a paired dominating set of G if it is a dominating set and the induced subgraph G[D]
has a perfect matching. The set {u,v} C D is called paired if uv is an edge in a perfect
matching of G[D]. The paired domination number 7,,(G) is the minimum cardinality
of a paired dominating set of G. A ~,,(G)-set is a paired dominating set of cardinality
~pr(G). Paired domination was introduced by Haynes and Slater [4] as a model for
assigning backups to guards for security purposes.

In [1], we introduced the ~y-paired dominating graph of G, denoted by PD.(G),
as the graph whose vertices are 7,,(G)-sets, and two v,,(G)-sets Dy and Dy are
adjacent in PD.(G) if Dy = (D; \ {u}) U {v} for some v € D and v ¢ D;. We
determined the ~v-paired dominating graphs of paths. In this paper, we present the
~v-paired dominating graphs of cycles. For example, the «-paired dominating graphs
of cycles Cy : vgv1v2v3vg and C : vou1v2v3v4vg are shown in Figure 1. We see that
PD,Y(C4) = 04 and PD,Y(C5) = K5.

{UO,Ul} {’U1,’U2} {'U07'U17'U27’US}

{va, v0,v1,v2} {v1,v2,v3,v4}

{vs,v0}  {w2,vs} {vs,va,v0,v1} {v2,vs,v4,v0}

Fig. 1. The ~-paired dominating graphs of Cy and Cs, respectively
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2. PRELIMINARY RESULTS

In this section, we recall some definitions, notations, and results used in the main
results.
Haynes and Slater [4] established the following useful lemma.

Lemma 2.1. For any integer n > 3, Ypr(Pn) = Ypr(Cn) = 21§ 1.

The Cartesian product of graphs G and H, denoted by GOH, is the graph with
vertex set V(G) x V(H) whose vertices (u,v) and (v/,v") are adjacent if u =« and
w' € E(H), or v="1v" and wu’ € E(G).

For any positive integers p and g, let P, : ujugus ---u, and P, : vivovs - - - vy be
two paths with p and ¢ vertices, respectively. Fricke et al. [2] defined a stepgrid SG, 4
to be the subgraph of P,[JF, induced by

{(ug,vy) e V(P,OP,): 1<z <pl<y<gqguz—y<l}

We call the vertex (usz,vy) in the stepgrid as the wvertex at the position (x,y).
For example, the stepgrids SG1,1,5G2 2, and SG4 3 are shown in Figure 2.

(u1,v1) (u1,v1) (u1,v2) (u1,v1) (u1,v2) (u1,v3)
°

(u2fv1) (u2} v2) (ug}v3)

(u2,v1) (u2,v2)

(ug} v2) (usf vs)

(uaf v3)
[ ]

Fig. 2. The stepgrids SG1,1, 5G2,2, and SG4,3, respectively

For any positive integers p,q, and r, let P, : ujugus - - - up, Py : v1v2v03 - - - vg, and
P, : wywows - - - w, be three paths with p, ¢, and r vertices, respectively. We define
a stepgrid SGyp, 4. as the graph with the vertex set

V(8Gpqr) = {(uz,vy,w:) € V(P,OPOP,) : 1<z <p,1<y<gq,
1SZST,$*Q§O,$*Z§1,ZJ*ZZO},

and the edge set
E(SG,4,r) = E(P,OP,0P,) U {(ug, Vg, Wy ) (Upt1,Vz11,Wg) 1 1 <z <p—1}.
The vertex (ug,vy,w;) is called the vertex at the position (x,y,z) in SG(p,q,r).

For example, the stepgrids SGs 21 and SG3 3 2 are shown in Figure 3, and the stepgrid
SGy,4,3 is shown in Figure 4, where we write (z,vy, 2) as (ug, vy, w).
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(1,1,1)

(1,2,1)

(2,2,1)

(1,2,2)

(1,3,2)

(1,1,1) (1,2,1)

&f- (2,3,2)

(2,2,1) (2,3,1)

(3,3,2)

Fig. 3. The stepgrids SG2,2,1 and SG3 3,2, respectively

(1,1,1)

(1,3,3)
(1,2,2) (1,3,2) (1,4,3)
(1,2,1)
sl @31 (2,4,3)
(2,2,2)}

N

(2,2,1) (2,3,1) (3,4,3)
(3,3,2) (3,4,2)

(4,4,3)

Fig. 4. The stepgrid SGa,4,3

Let P, : vyvgu3 - - - vy, be a path with n vertices. In [1], we determined the ~y-paired

dominating graphs of paths, and gave the following results.

Lemma 2.2. Let k > 1 be an integer. Then there is only one ~p,(Par—1)-set containing
the pair {vag—_2,var—1}, and there is only one ~ypr(Pak—1)-set containing the pair

{U1,U2}.

Lemma 2.3. Let k > 2 be an integer. Then all y,,(Py,—2)-sets containing the pair
{vak—3,Var—2} form a path A1As--- Ay with k vertices, where Ay and Ay are of
degree two, the others are of degree three, and Ay has a neighbor of degree two in
PD.(Pig—2). Moreover, Ay contains the pair {vag—¢,var—5}, and the others contain
the pair {vag—7,vak—¢}. The similar results also hold for the vy, (Pyx—_2)-sets containing
the pair {vy,va}.
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Lemma 2.4. Let k > 3 be an integer. Then all vy, (Pyx—3)-sets containing the
pair {vag_a,Vap—3} form a stepgrid SGy x—1, where By 1,Ba 1, B1 -1 are of degree
three, B p—1, B3 k—1,...,Br_1,—1 are of degree four, and By, 1 is of degree two in
PD.(Py—3). Moreover, By j—1,B2 j—1,. .., Br—1,k—1, contain the pair {vak—7,Var—¢},
and By i—1 contains the pair {vik—¢, Vax—s} (see Figure 5). The similar results also
hold for the ~p,(Pakx—3)-sets containing the pair {vi,vs}.

B1,1 Bip2 By g2
""" Bi k-1
""" B2 k-1

By
®----- B3 k-1
¢
Bi—1,k-1

® Bir—1

Fig. 5. The stepgrid SGi k-1

Theorem 2.5. Let k > 1 be an integer. Then PD.(Py) =2 Pi.
Theorem 2.6. Let k > 1 be an integer. Then PD~(Pyp—1) = Pyta.
Theorem 2.7. Let k > 1 be an integer. Then PD.(Pyr—2) = SG k.

Corollary 2.8. Let k > 2 be an integer, and Ay, the Yy, (Pik—2)-set at the position
(x,y) in PD,(Pag—2) = SGi i, (see Figure 6) for allz,y € {1,2,...,k} withx—y < 1.
If Ay 1 contains the pair {vik_3,vap—2}, then we get the following properties.

(Al) Ify = k, then A, contains the pair {vip_3,vak—2}; otherwise, it contains
the pair {vak—4,Vak—3}.
(A1.1) A, ) contains the pairs {vag—7,Vak—c}, {Vak—3, Vag—2} for all
ze€{l,2,...,k—1}, and Ay contains the pairs {vag_g, Vak—s},
{U4k—3, U4k—2}-
(A2) If v = 1, then A, contains the pair {vi,ve}; otherwise, it contains
the pair {vs, vs}.
(A2.1) Ay contains the pairs {vi,v2}, {va,vs}, and Ay, contains the pairs
{v1,va}, {vs,v6} forally € {2,3,... k}.
Theorem 2.9. Let k > 2 be an integer. Then PD~(Py—3) = SGr g k—1-
Corollary 2.10. Let k > 3 be an integer and By, the vpr(Pak—3)-set at the posi-
tion (x,y,2) in PD(Pip—3) = SGr k-1 (see Figure 7) for all x,y € {1,2,...,k},
z€{l,2,...., k=1 withe —y <0,z —2<1,y—2z>0. If By, contains the pair
{Vak—4,vVar—3}, then we get the following properties.
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(Bl) If y = k, then By, . contains the pair {vag_4,var—3}; otherwise, it contains
the pair {var—5,Vak—4a}.

(B1.1) By k-1 contains the pairs {vak—7,Vak—6}, {Vag—a,van—3} for all
x€{1,2,...,k—1}, and By x—1 contains the pairs {vik—¢, Vak—s},
{var—4,var—3}.

(B1.2) By . contains the pairs {vag—s, Vak—7}, {vVag—a,vap—3} for all z # k — 1.

(B2) If « = 1, then By, . contains the pair {vi,va}; otherwise, it contains
the pair {vq, vs}.

(B2.1) Bi1,1 contains the pairs {vi,va}, {vs,va}, and By y 1 contains the pairs
{v1,v2}, {va,v5} for ally € {2,3,...,k}.

(B2.2) By, . contains the pairs {vi,v2}, {vs,ve} for all z # 1.

A1 Al A g1 Ak
------- Ag i
[ S—
¢ Ag—1k
Ag.k

Fig. 6. The stepgrid SGi.x

Bik—1,k—2
By k—1,k-1

Bik,k—1
-1 Bikle—2
B By ao .
o 1?2/. Bk, k-1
Bi11 Biag A g ]
""""" Bilic2| .| | Bakfk—2
Bi31 Bilx1
NI 277./
""""" Bolic,2: .- :
Baa: -~ 1 Bh—o kb
Bz,2.1 B23,1 SNa ... 7,1 > : k—2,k,k—1
’ : B4 k,k—2
Br_1,k,k—1
Br_1,k,k—

* Bi,k,k—1

Fig. 7. The stepgrid SG,k,k—1
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3. v~-PAIRED DOMINATING GRAPHS OF CYCLES

In this section, we present the ~v-paired dominating graphs of cycles. We always
let C), : vov1v2 -+ - v, 109 be a cycle with n vertices. We first consider the v-paired
dominating graph of Cyy, as stated the following theorem.

Theorem 3.1. Let k > 1 be an integer. Then

04 kail,

PD,(Cax) = {4131 if k> 2.

Proof. From Figure 1, we get that PD. (Cy) = Cy. Let k > 2. By Theorem 2.1, we
have v,,(Cyr) = 2k. It is easy to check that

{v0,017047v53 cee 7v4k7477}4k73}7 {01,02,1}5,067 cee ,U4k73,v4k72}7
{11271137067’07, e 7U4k—2,’U4k—1}7 {Us,m,vmv& cee 7U4k—17U4k}
are the only v, (Cax)-sets. Thus, PD,(Cux) = 4P;. O

Before we prove the result on the ~-paired dominating graph of a cycle with 4k + 3
vertices, we need the following lemma.

Lemma 3.2. Let k > 0 be an integer and D a . (Cap+3)-set. Then there is exactly
one vertex not in D dominated by two vertices of D.

Proof. We can easily get that the lemma holds for ¥ = 0. Let & > 1. Note that
|D| = 2k + 2, so we can write D = UZE D,, where D,’s are pairwise disjoint
sets of paired vertices. Clearly, |[N[D.]| = 4 for all z € {1,2,3,...,k + 1}, and
V(Cagys) = Uig N[D,]. If N[D,]’s are pairwise disjoint sets, then

k+1
4k +3 = |V(Cagss)| = D IN[Dy]| = 4k + 4,

z=1

a contradiction. Therefore, without loss of generality, there are exactly two disjoint
sets Dy and Dy such that |[N[Dq] N N[Ds]| = 1. Thus, this common vertex is the only
vertex not in D dominated by two vertices of D. O

Theorem 3.3. Let k > 0 be an integer. Then PD~(Cuart3) = Capys.

Proof. For convenience, we omit the modulo 4k+3 in the subscript of each vertex. For

example, we write vy instead of V(z11) (mod akts)- For each x€{0,1,2,...,4k+2}, let
Dy = {votdit1, Vpgaivo : 0 <0 < k}

as shown in Figure 8, where D, contains the black vertices. It is easy to check that D,
is & Ypr(Cuar43)-set such that v, ¢ D, is the only vertex dominated by two vertices
of D,. Hence, Dy, D1, Da, ..., Dyjyo are all distinct. Similarly, we omit the modulo
4k + 3 in the subscript of each v, (Cak+3)-set.
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Vg

Vp4dk+2 = VUg—1 V41
Vg44k+1 = Vg—2 Vz+2
Vg44k = Ug—3 Vz+3
Vg44k—1 = Uz—4 VUz+4
Vg44k—2 = Ug—5 V45
VUg44k—3 = Vz—6 V46

Fig. 8. The fypr(04k+3)—set Dx

Claim that Do, D1, Ds, ..., Dagto are the only ~p,(Carysz)-sets. Let D be any
Vpr(Caky3z)-set. By Lemma 3.2, there is a unique vertex v, ¢ D for some
x €{0,1,2,...,4k + 2}, dominated by two vertices of D, so D = D,..

Let z € {0,1,2,...,4k + 2}. To find all neighbors of D, in PD.,(Cyy+3), we can
only replace vy 41 by vz43, Or v4—1 by v;_3 since v, is the only vertex dominated by
Vg1 and vy_q of Dy. Thus, (Dy \ {vgt1}) U{veys} and (D \ {vs—1}) U{vs—3} are
the only two neighbors of D, in PD.(C4x43). Note that

(D \ {vat1}) U{vats} = Doy

since v, 44 is the only vertex dominated by two dominating vertices. Similarly,
(Dx \ {Ux—l}) U {Uaf—?»} =Dy—4.

Therefore, Do, D4, ey D4k_4, D4k, Dl, D5, ey D4k_3, D4k+1, DQ, D67 ceay D4k_2,
Dyg1o, D3, Dr,...,Dyr_1,Dq form a cycle with 4k + 3 vertices. This completes
the proof. O

Before we determine the y-paired dominating graph of a cycle with 4k 4 2 vertices,
we define some notations and a new graph called a loopgrid.

For a nonnegative integer 4, let P, (v; : Vign—1) : UjUi41Vit2 " - Vitn—1 De a path
with n vertices.

For any positive integer k, let G : ujusus - - - ugr—1 and Ga : v1v9v3 - - - V31 be
two paths with 2k — 1 and 3k — 1 vertices, respectively. We define a loopgrid of size k,
denoted by LGy, as the graph with the vertex set

V(LGk) = {(uz,vy) € V(G1OG2) : 1 <2 <2k —-1,1<y <3k —-1,0<y—az <k},
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and the edge set
E(LGk) = E(G1DG2) U {(ul,vy)(ugk_l,vy+2k_1) 01 < Yy < k‘}

For example, Figure 9 illustrates the loopgrids LG, and LGa, where we use (z,y)
as (ug,vy).

LG 2Py *——
(1,1)  (1,2)

(L1 (1,2) (1,3
Fig. 9. The loopgrids LG and LG2, respectively

Lemma 3.4. Let k > 2 be an integer.

(1) Each vpr(Cagt2)-set cannot contain any six or more consecutive vertices.
(2) For any fized four consecutive vertices in Cag12, there is exactly one Yy, (Cap42)-set
containing them.

Proof. We prove the first claim by contradiction. Suppose that there is a v, (Cax4-2)-set
D containing [ consecutive vertices of Cyj42, where [ > 6 is an integer. Then these
[ vertices dominate | + 2 vertices in Cygto. Since p,(Cakt2) = 2k + 2, the other
2k 4 2 — [ vertices of D must dominate at least 4k + 2 — (I + 2) = 4k — [ vertices in
Cyr42. We consider them as a path with 4k — [ vertices. Note that the 2k +2 — [
remaining vertices of D can dominate at most 4k + 4 — 2l < 4k — [ vertices in this
path since [ > 6. Thus, D cannot dominate all vertices in Cyx2, a contradiction.
For the second claim, without loss of generality, we assume the four vertices are
v1, V2,3, vg. We find all 7, (Cyxy2)-sets containing them. By the first claim, all such
Ypr (Cak+2)-sets cannot contain vy and vs. The vertices vq, v2,vs,vs dominate six
vertices in Cyg42. Note that v,,(Cuapy2) = 2k + 2, so the other 2k — 2 vertices must
dominate all vertices in Pay—4(vs : Vapt1). Since vypr (Pagp—a(vs : Vapt1)) = 2k — 2,
these 2k — 2 vertices form a Yp,(Pag—4(ve : vag+1))-set. Thus, each vp,(Capy2)-set
containing vy, ve, vs, v4 is a union of a vy, (Pix—4(v6 : Vagt1))-set and {v1, va,vs, va}.
By Theorem 2.5, there is a unique 7y (Pig—4(v6 : vag+1))-set. The claim follows. O

Theorem 3.5. Let k > 1 be an integer. Then

C,0C; ifk=1,

PD,(Cypq2) = {LGk+1 ifk>2
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Proof. Figure 10 shows that PD.(Cs) = C50Cs5.

{UO;U13U27U3} {’Uo,’Ul,’Ug,’U4} {'U17U2)'U3:'U4}

.............

H ' H
{v1,v2, 03 fvo} {vo,vi,|va,vs} {aif v2,va, v}
'

R !

{v2,v3,v5,v0}  {vs,va,v5,v0} {v2,v3,v4,v5}

Fig. 10. The v-paired dominating graph of Cg

Let k > 2. Since each 7, (Capt2)-set must dominate the vertex vy, we get
it contains either the pair {vix,vag+1}, {Vak+1,v0}, {vo,v1}, or {vy,ve}. We first
find all vp,(Cax12)-sets containing the pair {vig,vars1}. By Lemma 3.4(1), such
a Ypr(Cak2)-set must satisfy one of the following:

(i) it contains the pair {v4k, var4+1} but not var_1, vo,
(ii) it contains the pairs {vggp_2,v4r—1} and {vak, Vag+1},
(iii) it contains the pairs {v4, vagt1} and {vg,v1}.

Note that each 7y, (Cyr+2)-set containing the pair {vig, vag+1} but not var_1,v0 is
a union of a vy, (Pag—2(v1 : Vak—2))-set and {vag, vag+1}. By Theorem 2.7, we have

PD,Y(P4]€,2<U1 : U4k,2)) = SGk’k.

For all z,y € {1,2,...,k} with x —y < 1, let AS; be the Ypr (Pik—2(v1 : vag—2))-set
at the position (x,y) in this stepgrid SGy k, and let

Da(clz)/ = Ac(clg),/ U {vak, Vag41}-

Thus, Dg?),’s are the only v, (Car+2)-sets containing the pair {vag, vag+1}, but not
Vag—1,v0, and they form a stepgrid SGi in PD,(Caxt2). By Lemma 2.3, with-
out loss of generality, we assume that A, contains the pair {vix_3,vag—_2} for
each x € {1,2,...,k}. By Corollary 2.8 (Al.1), we have A,(Cl,)c contains the pairs
{var—6,var—5}, {var—3,vap—2}. Let

DY, w = (DI {var—s}) U {var-1}-

By Lemma 3.4(2), the set D,(Clﬁl,k is the only 7, (Cig+2)-set containing the pairs

{vak—2,var—1} and {va, vag41}. By Corollary 2.8 (A2.1), we get Aﬁ contains the
pairs {vy,va}, {vs, vs}. Let

D) = (DI \ {v2}) U {wo}.

)
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By Lemma 3.4(2), the set DSS is the only 7y, (Cagt2)-set containing the pairs

{vak,var+1} and {vg,v1}. Therefore, all Dgg,’s form the graph, named DWW, in

PD.(Cypy2) as shown in Figure 11.

1 p (1) (1)
Dyo Dia Dy w1 Dy

, 2
._I D§,o

(1) (2)1 °

mtT Dz,k D1,1 Y '

- D@
DW o
. . (1)
Dy @
k'le,k—l

IDm
k+1,k - - -
(2) (2) 2 @)

D Jk D2,k Dk,k Dk+1 k

1,0 1,1 —1 1,k
(4)
a D1,0I_.
I (3)
D2,k D1,1) v
: D@
D® P
1 'D<3), w .
k’kDLk,—l
l 3) P N 1 o
it (@) (4) ....() (@)
4 4 4 4
Dl,k D2,k Dk,k Dk+1,k

Fig. 11. The graphs DY, D@ D® and D@ in PD.,(Cypy2)

Similarly, we can construct all v,,(Cuxy2)-sets as follows (the subscripts of all
vertices are modulo 4k + 2): for all z,y € {1,2,...,k} with z —y < 0, and for each
i€{1,2,3,4},

DQ(E’)U = Ag‘)y U {vak—1+i, Vakti}, Where A;Z)y is a Ypr (Pak—2(v; : Vag—344))-set,

D;(;J)rl,k = (D;(;)k \ {var—ayi}) U{vap—21i},

and
pl — (pl ) Ul
1,0 ( 1,1\{Uz+1}) {vie1}

These D,gci,)y’s are the only Ypr (Cak+2)-sets containing the pair {vag_144, Vakyi}, and
they form the graph D® in PD,(Cyy2) (see Figure 11). By Lemma 2.3, with-
out loss of generality, we assume AS,)k- contains the pair {vax—444, Vak—344}. For all
x,y €{1,2,...,k} with  —y < 1, we get the following properties.
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(A1) If y = k, then Dg(c%; contains the pairs {vVix—a+i,Vak—3+4i}, {Vak—144, Vakil;
otherwise, it contains the pa1rs {vap— 5+17'U4k a+ity {Vak—1+i, Vakti}-

(A’'1.1) for all z € {1,2,. -1}, D;c % contains the pairs {v4x—g4i, Var—74i},

(2)
{v4k,4+i,v4k,3+i}, {v4k,1+“v4k+l}, and Dk,k contains the pairs

{U4k—7+i7?4k—6+i}7 {vak—ati, Vak—3+i}s {Vak—1+4i> Vaktil-
(A’2) If x = 1, then Déz)y contains the pairs {Var—144, Vak+i}, {Vi, Vit1}; otherwise,
it contains the pairs {U4k 144 U4k+7'} {Uz'+1, ’UH_Q}
(A'2.1) Dgzl contains the pairs {vag—_1+44, Vag+i}, {Vi,Vit1}, {Vits, vita}, and
(l) contains the pairs {Vag—14i, Vak+its {Vi, Vit1}, {Vita, viys} for all
Y E {2 3,...,k}.
(A’3) D,(J_s)_l i is the only 'ypr(C4k+2)—set in D® containing the pairs
{U4_k 7+i7v4k76+i}7 {U4k73+iav4k72+i}7 {U4k71+i7@4k+i}, {Ui+1,vi+2}~
(A'4) Dg% is the only v, (Cyxr2)-set in D) containing the pairs
{Vak—54i, Vak—atits {Vak—14i> Vakrits {Vim1, i}, {Vits, Viga}

Note that D) and D®) cannot have any common vertices in PD.,(Cypy2) since
otherwise there is a 7y, (Car42)-set containing the pairs {vag, var+1} and {vagt1,v0},
which is impossible. Similarly, D and D(*Y do not share any vertices in PD.,(Cyj12)
for all i € {2, 3}.

We then consider all 7,,(Cix2)-sets that are in both D@ and D®). Then
these sets must contain the pairs {var,vag+1}, {vo,v1}. By (A’4) and (A’3), D%
and Dl(szk are the only 7, (Cagt2)-sets in DM and D®)| respectively, containing
the pairs {var, vag+1}, {vo,v1}. By Lemma 3.4(2), we get Dglg = D,(jH - Similarly,
Df()] D,(iel i 18 the only 7y, (Cyry2)-set that is in both D® and DWW,

We next consider all v,,.(Cyx42)-sets, which are in both D) and D®). These sets
must contain the pairs {vag, vag+1}, {v1, v2}. By (A’2), D %11), D?Q), cee Dgllz are the only
Ypr (Caky2)-sets in DM containing the pairs {vax, vag 11}, {v1,v2}, and they form a path
with k vertices. Then they also form a path in D). By (A’1), Dﬁl,)c, Dg},i, ce D,(;,)g
are the only 7,,(Cigt2)-sets in D® containing the pairs {Vak, Vak41}, {v1,v2}, and
they form a path with & vertices. To show that D(l) = (4) for each y € {1,2,...,k},
it suffices to show that Dﬁ = DYL,C y (A’2.1), D § % contalns the pairs {v4k, v4k+1}
{v1,v2}, {vs,v5}. By (A’1) and (A'2), DY},Z is the only 7, (Cyri2)-set in D™ containing
these three pairs, and hence, Dgll) = Dﬁi

Next, we consider all edges between a set in D) and a set in D®). We
first show that Dig has no neighbors in D®). By (A’4), Dg}g contains the
pairs {vVar_a,Var_3}, {Vak,Vars1}, {vo,v1}, {va,vs}. Since each set in D?) con-
tains the pair {vsri1,v0}, the set D% is adjacent to some set in D® if and
only if (D) \ {var}) U {v2} or (DU \ {v1}) U {oge—1} is a vpr(Cagsz)-set. It
is easy to check that D(l) is not adjacent to any sets in D). By (A’3),
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1 . .
D,(CJZI,C contains the pairs {v4r—¢,Vak—5}, {Vak—2,Vak—1}, {Vak,Vak+1}, {ve2,vs},
SO Dk+1 . is adjacent to some set in D@ if and only if (Dlg{:l,k \ {var}) U {vo}

or (Dk+1,k \ {vggp—2}) U {Uo} is a Ypr (Cag42)-set. We have (D,(CQ1 e \{var}) U{vo} is

& Ypr(Cagy2)-set, but (D} k+1 e \{var—2}) U {vo} is not. We show that D,(CJRI  and Dﬁi

are adjacent, i.e. (Dﬁl\{vo})u{mk} = k+1 K By (A’1) and (A'2), Dﬁz contains the

pairs {vax_2,vak_1}, {Vart1,v0}, {v2,vs}, 50 (D! Lk {vo}) U{var} is a vpr (Capg2)-set

. . . 1 )
containing the pairs {vqr—2, vVap— 1} {Vak, Vak41}. Since D,(H)1 . also contains these two

pairs, (Dﬁz \ {vo}) U{var} = k+1 by Lemma 3.4(2).
We next find all neighbors in D) of the other 7,,(Cyxy2)-sets in D). We

show that DQ(L,I,)c is adjacent to Dﬁ)g ; for all z € {1,2,...,k}. Recall that for all
x,y € {1,2,... k} withz—y <1, DY ?), contains the pair {va, Vag+1} but not vap_1, vo.
Note that D;(vl?), is adjacent to some set in D if and only if (DQ; \ {var}) U {vo}
is a Ypr (Cag42)-set. By (A1), if y # k, then D) .y contains the pairs {vgg_4, Var—3},
{vak, Vag+1}, so (Dg% \ {var}) U {vo} is not a dominating set. By (A’1) and (A’2),
Dglll contains the pairs {vag_3, Var—2}, {Vak, Vag+1}, {v1,v2}, and Dg,i, Dg,i, ol D,il,)c
contain the pairs {var—3,Var—2}, {Vak,Var+1}, {v2,v3}. For each x € {1,2,...,k}, let
D, = (DS%\{U%})U{UO}, 80 Dy, is a vy, (Cagy2)-set, and these D,’s form a path with &
vertices in D(®). Note that D; contains the pairs {v4x_3,var_2}, {Varr1,v0}, {v1,v2},
and Da, D3, ..., Dy contain the pairs {vsr—3,Var—2}, {Vak+1,v0}, {v2,v3}. By (A’4),

(2) is the only vp, (Cygy2)-set in D® containing the pairs {vag—3,Vag—2}, {Vak+1,v0},

{Ul, va}, and by (A’1), (A’2), D 5 %, D§22), e ,Df;f1 are the only 7y, (Cypy2)-sets in
D®) containing the pairs {v4k,3,v4k,2}, {vak+1,v0}, {v2,v3}, and they also form
a path with & vertices in D®. Then we can conclude that for all z € {1,2,...,k},
D, = ng)c_l, implying that Di,l,)c is adjacent to Dfi_l. To sum up, Dg(cl,)C is adjacent
to Dfifl for all x € {1,2,...,k 4+ 1}. Similarly, for all : € {2,3}, we get D;(:)k is

adjacent to D:(Ll;rll for all z € {1 L k+1}

Now, all VpT(C4k+2) sets and edges form a loopgrid LGj41 in PD~(Cypy2). Then
we only need to show that there is no more edge in PD.(Cap42). We first consider all
edges between a set in

bW =pm _ pv

and a set in

D® = p® — Dl(c?:zl,k

since D% = Dl(jzl,k' Note that each set in D) contains either the pairs {v4g, Vagt1},

{v1,v2}, or the pairs {vsg, vag+1}, {v2,v3} while every set in D®) contains the pair

{vo,v1} but not {vsg,vsrt1}. Hence, there is no edge between a set in DM and
a set in D). Similarly, there is no edge between a set in D(?) — ng and a set in



44 Pannawat Eakawinrujee and Nantapath Trakultraipruk

DW — DY, . Recall that D{!) = D'Y) for all y € {1,2,...,k}. Also, DI} = D¥), |,

which has a neighbor in D*). Thus, we consider all edges between a set in
~ 1
DW =pW (DM 0<y <k}

and a set in B .
DW =DW (D) 1<y <k}

Note that each set in D) contains the pairs {vgg, Vag+1}, {v2,v3} while each set in
D® contains the pair {v1,v2} but not {vag,var41}. Hence, there is no edge between
a set in DM and a set in D™ . This completes the proof. O

For any positive integer k, let G1 : ujusug---usk, Go : vivov3 - Vg, and
G : wywaws - - - wakt1 be three paths with 2k, 2k, and 2k + 1 vertices, respectively.
We define a loopbozx of size k, denoted by LBy, as the graph with the vertex set
V(LBg) ={(uz,vy,w;) € V(GiOG20OG3) : 1 <2,y <2k, 1 <2z <2k+1,
0<y—z<k-1<y—2z<k—-10<z-—x <k},

and the edge set

E(LBy) = E(G10G20G3) U {(ug, Vgtr—1, W) (Ug, Vgt ke, Wag1) : 1 <z < k}
U {(u1, v, w1) (g1, V2k, Wet) }
u{
u{
u{

u{

Ugy Vgy Wot1) (Ut 15 Va1, Wep1) : 1 <2 <2k —1}
ulavkawarl)(UQk,U2k,w2k+1)}

Uz, Vgt ks Wath) (Ut 15 Vaths Wat k1) 0 1 < @ <k}

UL, Uy, Wy ) (Ugt ey Vol Wytg+1) 1 1 <y, 2 <k, —1<y—z<k-—1}

o~ o~ o~ o~

For example, the loopboxes of size 1, 2, and 3 are shown in Figures 12, 13, and 14,
respectively, where we write (z,y, 2) as (ug, vy, w,).

Lemma 3.6. Let k > 2 be an integer.

(1) Each vpr(Cagt1)-set cannot contain any six or more consecutive vertices.

(2) For any fized four consecutive vertices in Cagt1, there are k ~p,(Cags1)-sets
containing them, and each set is a union of a Yp,(Pax—s5)-set and a set of these
four vertices.

Proof. Similar to 3.4(1), we can easily prove the first claim. Next, without loss of
generality, we assume the four vertices are wvi,vs,vs3,vq. Then these four vertices
dominate six vertices in Cag41. Note that v, (Cars1) = 2k + 2, so the other 2k — 2
vertices must dominate all vertices in Pyy_5(vg : va1). Since

Yor (Pak—s5(ve : var)) = 2k — 2,

these 2k — 2 vertices form a 7y, (Pix—s5(vs : vax))-set. Hence, each such v, (Cagy1)-set
is a union of a vy, (Pix—5(ve : vag))-set and {v1,v2,vs,v4}. By Theorem 2.6, there
are k Ypr (Pak—5(ve : vag))-sets, so the claim follows. O



~y-paired dominating graphs of cycles 45
(1,1,2)  (1,2,2)
(L,1) (22.3)
(2,2,2)
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Theorem 3.7. Let k > 1 be an integer. Then PD~(Cayt1) = LBy.
Proof. Figure 1 shows that

D, (Cs) = K5 =~ LB,.

For k = 2, we have
D, (Cy) = LBy

(see Figure 13), where

5 Ly {UO,Ul,Ug,’U37’U5,’U6}
172 1) = {0077}1;”27”37@6707}7
1,2,2

) )

2,2,2

) )

( ) =

( ) = ( ) =

( ) = {vg,v1,v3,v4, 06,07}, ( )=

( ) = {vo,v1,v4, 5,06, 07}, ( )=

(1,3,2) = {vy,v9,v3,v4, 06,07}, ( )=

(2,3,2) = {v1,v2,v4, 05,06, 07}, (2,3,3) = {v1,v2, v4, V5, V7, Vs },
(3,3,3) = {v1,v2,v4,05,0s8,00}, ( )=

(3,4,3) = {v1,v2,v5,06, 08,00}, ( )=

(3,3,4) = ( ) = {v2,v3,v5,v6, V7, U8},
( )= (3,4,5) = {v2, v3,v6,v7,vs,v0},
(4,4,4) = (4,4,5) =

{’U3,124, U67U77U87UO}

{02703,714»”5,1)8,@0}
3 4 4) = {0237}331}571)671)877)0}7

)

{03,04, U57U67U8700}7

Let k > 3. Since each 7y, (Cyx+1)-set must dominate the vertex vy, it contains either
the pair {vag_1,var}, {vag,vo}, {vo,v1}, or {vi,va}. We first find all v, (Cag41)-sets
containing the pair {var_1,v4r}. By Lemma 3.6(1), such a 7, (Car41)-set must satisfy
one of the following;:

(i) it contains the pair {v4r—1,v4r} but not var_a,vo,
(ii) it contains the pairs {vap_3, var—2} and {var_1,vag },
(iii) it contains the pairs {vqr_1,var} and {vo,v1}.

Note that each 7y, (Cyr+1)-set containing the pair {vig_1,var} but not var_o2,vo is
a union of a vy, (Pyx—3(v1 : vak—3))-set and {vag_1,va }. By Theorem 2.9, we have

PD.(Pay—3(v1 : vag—3)) = SGp k. k—1.

Forall z,y € {1,2,...,k}and z € {1,2,...,k—1} withe—y < 0,2—2 < 1,y—2z > 0,
let ng),,z be the v (Pak—3(v1 : vak—3))-set at the position (z,y,2) in SGkk k-1,
and let

D( ) = B(l) U {'U4k—17v4k}-

z,Y,2

Thus Dg?),,z’s are the only ,,(Cak+1)-sets containing the pair {v4r_1,vax} but not
Vag—2,v0, and they also form a stepgrid SG i x—1 in PD,(Cir+1). By Lemma 2.4,
without loss of generality, we may assume that BS; , contains the pair {vir—4, var—3}.
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By Corollary 2.10 (B1.1), the set Bif,l’kfl contains the pairs {vir_7,v4k—6},

{Vag—a,v4k—3} for all z € {1,2,...,k — 1}, and B,(;,)g,k_l contains the pairs
{7)410767 7)4]@,5}7 {’U4k,47 1)4]6,3}. For each x € {17 2,..., k}7 let

D)= (D) o\ {var—a}) U {vai—2}.

By Lemma 3.6(2), these DS,)C ,'s are the only v, (Cyr41)-sets containing the pairs
{Vak—3,Vak—2}, {Var—1, v4k} By Corollary 2.10 (B2.1), the set Bg 1,1 contains the pairs

{v1,v2}, {vs,v4}, and B y 1 contains the pairs {vy,va}, {vg,v5} forally € {2,3,...,k}.
For each y € {1,2,...,k}, let

DY) = (DS \ {u2}) U {wo}.

By Lemma 3.6(2), these D&)/’O’s are the only 7, (Caxt1)-sets containing the

pairs {v4r—1,var}, {vo,v1}. Therefore, all DY 3),2 s form the graph, named D) in

D.,(Cag+1) as shown in Figure 15.

Similarly, we can construct all v,,(Caxy1)-sets as follows (the subscripts of all
vertices are modulo 4k + 1): for all z,y € {1,2,...,k} and z € {1,2,...,k — 1} with
x—y<0,z—2<1,y—2z>0,and for each i € {1,2,3,4},

D) =B U {vak—2+i, Var—14i}s

T,Y,2 T,Y,z

where Bg(g v,z 18 a Ypr (Pak—3(v; * Vag—_aqq))-set,

DY = (DY) oo \Mvae—ssi}) U {var—sii},
(1) )
1,9,0 Y,

= (D{) 1\ {vir1}) U {vi_1}.

)

We get that these D;?y,z’s are the only ~p,(Cart1)-sets containing the pair
{V4p_244,Vap_11i}, and they form the graph D) (see Figure 15) in PD,(Capy1)-
By Lemma 2.4, without loss of generality, we may assume that BSLZ contains the
pair {v4k_544, Vag—a+i}, and then we get the following properties.

(B'1) Let 2 € {1,2,...,k} and z € {0,1,...,k — 1}. If y = k, then D{, . contains
the pairs {v4g—5+4, Vak—a+i }s {Vak—2+i, v4k_1+1} otherwise, it contains the pairs
{U4k 644> Vdk— 5+i} {U4k 244 Vdk— 1+z’}

(B'1.1) D(l)kk , contains the pairs {vag— 8+Z,v4k 74i by AVak—54is Vak—dtit
{Vak—2+i,Vap—14i} for all x € {1,2,...,k — 1}, and DY )k k_1 contains
the pairs {U4k—7+i7v4k—6+i}7 {U4k—5+i7'U4k 4+z} {U4k 2+i7'U4k—1+i}-

(B'1.2) if z # k — 1, then D;Z)kz contains the pairs {vak—94i,Vak—s+il,
{”U4k—5+z', ’U4k—4+i}, {'U4k—2+i; Vak— 1+z}

(B'2) Let y € {1,2,...,k} and z € {1,2,...,k}. If © = 1, then Dwyz con-
tains the pairs {var—244, Vak—1+i ), {’Ui,vl+1} otherwise, it contains the pairs
{vak—24i, Var—14i}s {vit1, Viga}-
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(B,Z.l) Dﬁ)lvl contains the pairs {'U4k—2+iav4k'—1+i}a {UZ‘,’UZ'+1}, {’UZ‘+2,UZ'+3},
Dyll c{ontains the}pairs {Vak—24i Vak—1+i}, {Vi,Vit1}s {Vit3,Viga} for
all'y € {2,3,..., k).
(B'2.2) If z # 1, then Dﬁ;,z contains the pairs {vag—_oti, Vag—144}, {Vi,Vit1},
4 {Pi+4,vi+5}- '
(B’3) DY,L,WD;L,@ . .7D,(:7)k’k are the only vp,(Cart1)-sets in D® containing the
pairs {vag—ati, Vak—3+i}, {Vak—2+44, Vak—1+44}-
(B'3.1) Dﬁck contains the pair {v;,v;+1}, and the others contain the pair
{vit1,viga}
(B’3.2) D,(;)k)k contains the pair {v4g_744, Vag—6+i}, and the others contain
the pair {vag—sti, Vak—74i}-
B'4) DY), DY) DY are the onl c in DO ini
(B'4) Di1o,Disg,---»Dyyo are the only v, (Capy1)-sets in containing
the pairs {vax—24i, Vak—14i}, {vi-1,vi}.
(B’4.1) DY))LO contains the pair {v;12,v;13}, and the others contain the pair
{Ui+3, Ui+4}-
(B'4.2) D%L’O contains the pair {v4g_54i, Vak—a+i}, and the others contain the
Pair {Vak—6+i, Vak—5+i -

Note that DM and D@ cannot have any common vertices in PD.,(Cyg1) since
otherwise there is a vp,«(C4k+1)fset containing the pairs {vig—1,v4r} and {vag, vo},
which is impossible. Similarly, D(® and D+ do not share any vertices in PD.(Cag1)
for all i € {2,3}.

Then we consider all v,,(Cyry1)-sets that are in both DM and D®). Then
these sets must contain the pairs {vigp_1,v4r}, {vo,v1}. By (B’4) and (B'4.2),

DS{O,D&{O, . .,Dilllo are the only vp,(Cart1)-sets in DM containing the pairs
{vak—1,var }, {vo,v1}, and DS,?O contains the pair {v4_4, V453 }. By (B’3) and (B’3.2),
sz}k,Dé,%’k, . ,D,(CB,)M are the only 7, (Cyrr1)-sets in D®) containing the pairs

{vak—1,va }, {vo,v1}, and D,(j,)c,k contains the pair {v4g_4,v4x—3}. By Lemma 3.6(2),
for each y € {1,2,...,k}, we have

n
D17y70 = TLy’O U {var—1,Vak, Vo, V1 },

where Tl(};’o is a Ypr(Pak—5(v3 : vag—3))-set, and

3 3
Dé,)ck = Ty(’k’k U {v4r—1, Vak, vo, v1 },
@ . . B (1) (3) : :
where T, ; is a Ypr (Pak—5(v3 : var—3))-set. Since Dy ;.o and Dy contain the pair

{vah—a,var_s}, 50 do T} s and T . By Lemma 2.2, 7% | = T) . By Theorem 2.6,
for each y € {1,2,...,k}, we have Tl(,ly),O = Tfk)k, and hence DS;’O = Dg(jg,lk Similarly,
we get Df;o = D?S%,)c’k for all y € {1,2,...,k}.

We next consider all v, (Car41)-sets, which are in both D@ and D@, Then these
sets must contain the pairs {vgg_1,var}, {v1,v2}. By (B'2), for all y,z € {1,2,...,k},
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all D§1; ,’s are the only 7, (Cagt1)-sets in D containing the pairs {v4k_1,v4k},
{v1,v2}, and they form the left graph in Figure 16. By (B'1), for all z € {1,2,...,k}
and z € {0,1,...,k — 1}, all Dg(c ,1 ,’s are the only v, (Cyp41)-sets in D® contamlng
the pairs {vag—1,var}, {v1,02}, and they form the right graph in Figure 16. To show

that Dgy;)z = DS,)C,%1 forally,z € {1,2,...,k} with y — 2z > 0, it suffices to show that
D§1,Z = D,(:L,)c w_1- By (B3.1), D( ,ik contains the pairs {vgg—3, vak—2}, {Vak—1,Var},

{v1,v2}. By (B'1.1), D,(:lk x_1 contains these three pairs as well. By Lemma 3.6(2), we
have

1) (1)
Dy gr =Tk U{van—3, vap—2, vap—1,var }
and

4) (4)
D;(C,k,k_l =T k-1 Y {vak—3, Vap—2, Va1, Var },

where Tl(lk) , and T,g4,2 k1 ar€ Ypr(Par—5(v1 : v4x—5))-sets containing the pair {vq,va}.
By Lemma 2.2, we get Tl(l) bE = T,ifl,zyk_l, and thus Dgllz E = D,(f,)mk_l.

1.kk—1
(4) ’
Dy k2
pm
1,k—1,k—1 (1) (4) (4)
Dy ok (@ Dyia Dy k-1
1 .- = 1)
""" (1) :
.—.4-.- Do o . ED(4)
(1 (1 (1) (1) 4 H H 1k k—
Dy, ; 1 D1,2)>,1 D11 DPipn D, : k—1,k,k—1
(4)
Dy Jkk—2 D}(:*L 1

Fig. 16. The 7, (Car+1)-sets containing the pairs {vax—1,var} and {vi,va}

Next, we consider all edges between a set in DY) and a set in D(?). We first find all
neighbors of DS;O in D@ for each y € {1,2,..., k}. We show that D&)p is adjacent to
D,(j,)gyk, and Dfli,o is adjacent to D%)p. By (B'4), (B'4.1), (B'4.2), D§,11),0 contains the
pairs {vag—5, Vak—a}, {Vak—1,vax}, {vo,v1}, {vs,va}, the set D?‘;
{van—5,var—a}, {var—1,var}, {vo,v1}, {va,vs} for each y € {2,3,...,k—1}, and DS;)C,O
contains the pairs {var_4, var_3}, {Vap_1,var}, {vo,v1}, {v4,vs}. Since each set in D)

(0 contains the pairs

contains the pair {v4g, vo}, the set Dglz o is adjacent to some set in D@ if and only if
(D1 0\ o1 })U{va—2} or (DI} 6\ {va—1})Ufva} is 8 7pr (Caigr)-set. We have (D] o\
{v1 D U{vak—2} i a 7 (Cagr)-set, but (DY) (\{v1})U{vak_2} is not if y # 1. Note that
(Dg}io \ {v1}) U {vgr—2} contains the pairs {v4g—5,Vak—a}, {Var—2,Vak—1}, {Vak,v0}.
By (B'3.2), Dl(j,)c’k also contains these three pairs. By Lemma 2.2 and 3.6(2), we get
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(Dﬂ,o \ {v1}) U{vag—2} and D,(f,)ck are unions of a unique vy, (Pag—5(v2 : Vag—4))-set
containing the pair {vig—5,v4x—4} and {vgr_2, Vak—1, Vak, vo }. Hence,

(DM o\ {v1}) U {vss—2} = D,

that is, Dg f o is adjacent to Dk %k~ Moreover, we see that (Dglll o \{vak—1}) U {v2}
is a pr(Cag+1)-set, but ( 1y70 \ {vak-1}) U {v2} is not if y # k. Note that
(D%,O\{U%A})U{W} contains the pairs {va,vo}, {v1,v2}, {vs,vs}. By (B'4),
Dﬁ)o also contains these three pairs. By Lemmas 3.6(2) and 2.2, we have
( 1 k o \vae—1}) U} = D1 1,0, that is, DS%VO is adjacent to Dfio.

We next find all nelgthI‘b of D;,)Ck in D@ for each = € {1,2,...,k}. We claim that
D; ,1 « 1s adjacent to D1 k1 foreachz € {1,2,...,k},and D,g .1, is adjacent to D1 ek
By (B’3), (B’3.1), (B'3.2), DS,)M contains the pairs {vig—7, Vak—6}, {Vak—3, Vak—2},
{vak—1,var}, {v1,v2}, the set D;lllk contains the pairs {var—7,Var—6}, {Vak—3,Var—2},
{Vag—1,Va }, {v2,v3} for each x € {2,3,...,k — 1}, and D,(i,)%k contains the pairs
{Vak—6,Var—5}, {Vak—3,vap—2}, {vak—1,vax}, {v2,v3}. Note that Dill){k is adjacent to
some set in D® if and only if (D) , \ {var—1}) U {vo} or (D), \ {vae—3}) U {wo}
is a Ypr(Cag+1)-set. We have (D( ok \{vak—1}) U {vo} is a Ypr(Cak41)-set for each
z € {1,2,...,k}, and then we let N, = (D x,k,k \ {var—1}) U {vo}. Note that
N; contains the pairs {vgr—3,v4x—2}, {Vak,v0}, {v1,v2}, and Nz, N3,..., N con-
tain the pairs {v4r—3,Vak—2}, {Vak,v0}, {v2,v3}, and they form a path with k ver-
tices in D). By (B'4.2), we have Df,z’o is the only 7,(Cyrs1)-set in D@ con-
taining the pairs {vir—3,vak—2}, {vak,v0}, {v1,v2}, and by (B’1l) and (B'2), we
have that Df,lm Df%g, . ’Dfll,k—l are the only 7, (Car41)-sets in D®) containing
the pairs {vak—3,Var—2}, {Var,v0}, {v2,v3}, and they form a path with k vertices
in D@, Then we can conclude that for each z € {1,2,...,k}, N, = Df,l,zil,
which means Dg(ﬂl’,)c’k is adjacent to D;%Z:z 1- Moreover, (D,(Cll)c e\ {var—3}) U {vo}
is a Ypr(Cagy1)-set, but (D(ll)ck \ {var—3}) U {vo} is not if © # k. Note that

(Dk hok \ {var—3}) U {vo} contains the pairs {vsr—2,vak-1}, {var,v0}, {v2,vs3}.
By (B’3.1), Dg ,1 « also contains these three pairs. By Lemmas 3.6(2) and 2.2, we get
(D,S)ﬁk \ {vap—3}) U{vo} = Di,lk, that is, th’k is adjacent to Dﬁik

Last but not least, we find all neighbors in D®) of the other ~,,(Cyry1)-sets
in D). We prove that D;l)” is adjacent to Dgz)x ; for all z € {1,2,...,k},
z € {1,2,...,k — 1}. Recall that for all Yy € {1,2,.. kY, oz € {1,2,... 0k — 1},
Dg},;,z contains the pair {vq_1, vax } but not vgr_a, vg. Then Dg(gl,;,z is adjacent to some
set in D) if and only if (Dg;z \ {var—1}) U{vo} is a vp, (Cax+1)-set. By (B'1), ij{,yz
contains the pairs {vgg_5, Vak—4a}, {Vak—1,var } for all y # k, so (D&fz),,z\{v4k,1})u{vo}
is not a dominating set. By (B’1) and (B’2), for all z € {1,2,...,k — 1}, we have
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Dg,l,z contains the pairs {vix—4, Vag—3}, {Vak—1,vax }, {v1,v2}, and DS,)C’Z contains the
pairs {vak—a,Vak—3}, {vak—1,var}, {va,vs} for all x # 1. For all z € {1,2,...,k} and
ze{l,2,... k—1},let Dy = (D) \ {vae—1}) U{vo}, 50 Dys s & 7y (Capsr)-set
in D@, and these D, .’s form the graph shown in Figure 17. Note that for all
z€{1,2,...,k—1}, Dy, contains the pairs {vax_a,Var—3}, {var,vo}, {v1,v2}, and
D, , contains the pairs {vsr—4,vak—3}, {Var,v0}, {ve,vs3} for all x # 1. By (B'4)
and (B'4.2), Din,DfQ)_O,...,Dﬁz_lo are the only 7,.(Cypy1)-sets in D) con-
taining the pairs {vig—_a, vap—s}, {0ar,vo}, {v1,v2}, and by (B'1) and (B'2), for all
y,z €{1,2,...,k—1}, Dﬁi ,’s are the only Vp, (Cag1)-sets in D®) containing the pairs

{vak—a,Var—3}, {Vak,v0}, ’{1027 vz}, and they form the graph shown in Figure 18. Then
(2)

1,z,x—1

for all x € {1,2,...,k}, 2 € {1,2,...,k — 1}, that is, DY s adjacent to D§)2;,I71.

x,k,z

the graphs in Figures 17 and 18 are the same, so we can conclude that D, , = D

(L)
DLk.k—l D11

Fig. 17. The graph in D® induced by D, .'s

The results about the edges between a set in D and a set in DO for all
i € {2,3} are the same as the edges between a set in D) and a set in D). Since

Dg’lio = Dﬁi x> the edges D&)’OD,(f,l . and D,(f,)c kDﬁi . are the same. Similarly,
2 2 3 2 3 3 4
Dg,;,ngJ),o = D§,1),0D1(c,l)€,k and DE,I&,OD&LO = Dg,l),ODl(c,l)c,k’ Now, all 7, (Cyr11)-sets
and edges form a loopbox LBy, in PD, (Cyk41)- Then we need to show that there is
no more edge in PD,(Cyxy1). Recall that DS;,O = D;glzk for all y € {1,2,...,k}, so
we consider all edges between a set in
DW =pW (D) 1<y <k}

and a set in

~ - 3
D® =p® _{D¥ 1<y<k}).

Note that a set in D() contains either the pairs {v4g—1,Vak }, {v1,v2}, or the pairs
{vag_1,var}, {vo,v3} while a set in D) contains the pair {vg, v1} but not {vsx_1,var}.
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Fig. 18. The graph in D® induced by D'* s

Ly,z

Thus, there is no edge between a set in D and a set in D®). Similarly, there is no edge
between a set in D) — {ng),,o :1 <y <k}andasetin D — {Dﬁck 1<y <k}l
Recall that D{") _ = p) for all y,z € {1,2,...,k}. Also, for all y € {1,2,...,k},

1,y,2 z,k,y—1
DS;’O = D;glik, which has a neighbor in D®). Hence, we consider all edges between
a set in B
D(l) = D(l) _ {D(l) Dg};’o -1 S Y, 2 S k.}

1l,y,2°
and a set in _
DW =p®W _(pW 1<y <k}

z,k,y—1

Note that a set in D) contains the pairs {v4g—1,v4x}, {v2,v3} while a set in D®
contains the pair {vy,va} but not {vsr_1,vax}. Thus, there is no edge between a set
in DM and a set in D™, This completes the proof. O
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