PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inkjet 3D printing – towards new micromachining tool for MEMS fabrication

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three-dimensional (3D) printing has the potential to transform science and technology by creating bespoke, low-cost appliances that previously required dedicated facilities in order to be made. An attractive and promising research field comes in the form of using 3D printing to create MEMS, including microfluidic structures. In this paper, a discussion on applicability of inkjet 3D printing (i3Dp) for MEMS fabrication is presented on the base of works carried out by a team led by the author.
Rocznik
Strony
179--186
Opis fizyczny
Bibliogr. 46 poz., rys., wykr., tab.
Twórcy
autor
  • Wrocław University of Science and Technology, Faculty of Microsystems Electronics and Photonics, Janiszewskiego Str. 11/17, 50-372 Wrocław, Poland
Bibliografia
  • [1] K. Hierolda, Lab on a chip technology, Caister Academic Press 2009
  • [2] Y. Ghallab and W. Badawy, Lab-on-a-chip: techniques, circuits and biomedical applications, Artech House, 2010
  • [3] M. Esashi, M. Takinami, Y. Wakabayashi, and K. Minami, “High-rate directional deep dry etching for bulk silicon micromachining”, J. Micromech. Microeng. 5/1, 1995, 5‒10
  • [4] M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic etching properties of KOH and TMAH solutions”, Sensors and Actuators A 80, 2000, 179‒188
  • [5] H. Becker and C. Gartner, “Polymer microfabrication technologies for microfluidic systems”, Anal. Bioanal. Chem. 390, 2008, 89‒111
  • [6] E. Sollier, C. Murray, P. Maoddi, and D. Carlo, “Rapid prototyping polymers for microfluidic devices and high pressure injections”, Lab Chip 11, 2011, 3752‒3765
  • [7] M. Eddings, M. Johnson, and B. Gale, “Determining the optimal PDMS–PDMS bonding technique for microfluidic devices”, J. Micromech. Microeng. 18, 2008, 1‒4
  • [8] S. Quake, M. Unger, H. Chou, T. Thorsen, and A. Scherer, “Monolithic microfabricated valves and pumps by multilayer soft lithography”, Science 288, 2000, 113‒116
  • [9] L. Golonka, “Technology and applications of Low Temperature Cofired Ceramic (LTCC) based sensors and microsystems”, Bull. Pol. Ac.: Tech. 54/2, 2006
  • [10] J. Bryzek, “Trillion Sensors Movement in Support of Abundance and Internet of Everything”, Materials of Sensors Conf. 2014 Santa Clara, CA, March 6, 2014
  • [11] H. Lispon, “3D printing: the technology that changes everything”, NewScientists, 03.08.2011
  • [12] B. Berman, “3D printing: the new industrial revolution”, Bussines Horizons 55, 2012, 155‒162
  • [13] Gartner IT Glossary, July 2015, web page: www.gartner.com/it-glossary/3d-printing
  • [14] A. Kamyshny, S. Mgdassi, “Conductive Nanomaterials for Printed Electronics”, Small 10/17, 2014, 3515–3535
  • [15] T. Ahmadraji, L. Gonzalez-Macia, T.Ritvonen, A. Willert, S. Ylimaula, D. Donaghy, S. Tuurala, M. Suhonen, D. Smart, A. Morrin, V. Efremov, R. Baumann, M. Raja, A. Kemppainen, and A. Killard, “Biomedical Diagnostics Enabled by Integrated Organic and Printed Electronics”, Analytical Chemistry 89, 2017, 7447
  • [16] R. Martins, L. Pereira, and E. Fortunato “Paper electronics: a challenge for the future”, SID Symp. Dig. Tech. Pap. 44, 2013, 365–367
  • [17] H. Tan, T. Tran, and C. Chua, “A review of printed passive electronic components through fully additive manufacturing methods”, Virtual and Physical Prototyping 11/4, 2016, dx.doi.org/10.1080/17452759.2016.1217586
  • [18] M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies”, Int. J. Adv. Manuf. Technol. 67, 2013, 721‒1754
  • [19] J. Stringer and B. Derby, “Limits to feature size and resolution in ink jet printing”, J. European Ceramic Society, 29, 2009, 913‒918
  • [20] R. Walczak and K. Adamski, “Inkjet 3D printing of microfluidic structures – on the selection of the printer towards printing your own microfluidic chips”, J. Micromech. Microengineering 25, 2015, 085013
  • [21] K. Ohtani, M. Tsuchiya, . Sugiyama, T. Katakura, M. Hayakawa, and T. Kanai, “Surface treatment of flow channels in microfluidic devices fabricated by stereolitography”, J. Oleo Science 63, 2014, 93‒96
  • [22] A. Shallan, P. Semjkal, M. Corban, R. Gujit, and M. Breadmore, “Cost-effective three-dimensional printing of visibly transparent microchips within minutes”, Anal. Chem. 86, 2014, 3124 – 3130
  • [23] G. Hoople, D. Rolfe, K. McKinstry, J. Noble, D. Dornfeld, and A. Pisano, “Comparison of microscale rapid prototyping techniques, J.of Micro- and Nano-Manufacturing, 2, 2014, 034502‒1
  • [24] R. Walczak, K. Adamski, and D. Lizantes, “Inkjet 3D printed check microvalve”, J. Micromech. Microeng. 27/4, 2017, 047002
  • [25] A. Kęsy and J. Kotliński, “Mechanical properties of parts produced by using polymer jetting technology”, Arch. Civil and Mechanical Eng. 3, 2010, 37‒50
  • [26] J. Mueller, K. Shea, and C. Daraio, “Mechanical properties of parts fabricated with inkjet 3D printing through efficient experimental design”, Materials and Design 86, 2015, 902‒912
  • [27] K. Weiss, N. Bagrets, C. Lange, W. Goldacker, and J. Wohlgemuthm “Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime”, IOP Conf. Series: Materials Science and Engineering 102, 2015, 012022
  • [28] R. Walczak, K. Adamski, A. Pokrzywnicka, and W. Kubicki, “Inkjet 3D printing – studies on applicability for lab-on-a-chip technique”, Procedia Engineering 168, 2016, 1362 – 1365
  • [29] F. Zhu, J. Skommer, N. Macdonald, T. Friedrich, J. Kaslin, and D. Wlodkowic, “Three dimensional printed milifluidic devices for zebrafish embryo tests”, Biomicrofluidics 22, 2015, 046502
  • [30] K. Adamski, W. Kubicki, and R. Walczak, “3D printed electrophoretic lab-on-chip for DNA separation”, Procedia Engineering 168, 2016, 1454 – 1457
  • [31] R. Walczak. W. Kubicki, and J. Dziuban, “Low cost fluorescence detection using a CCD array and image processing for onchip gel electrophoresis”, Sensors and Actuators B 240, 2017, 46–54
  • [32] R. Walczak, “Lab-on-a-chip fluorescence detection with image sensor and software-based image conditioning”, Bull. Pol. Ac.: Tech. 59, 2011, 157‒165
  • [33] K. Oh and C. Ahn, “A review of microvalves”, J. Micromech. Microeng. 16, 2006, R13-R39.
  • [34] C-T. Chen, “Inkjet printing of microcomponents: theory, design, characteristics and applications”, Chapter in Features of Liquid Crystal Display Materials and Processes, edited by N. Kamanina, Intech, 2011
  • [35] A. Au, W. Huynh, L. Horowitz, and A. Folch, “3D printed microfluidics”, Angew, Chem. Int. Ed. 55, 2016, 3862‒3881
  • [36] Web page, of Dolomite, Fludic Factory 3D Printer, https://www.dolomite-microfluidics.com/product-category/microfluidic-components/fluidic-factory, 2017
  • [37] W. Su, B.S. Cook, Y. Fang, and M.M. Tentzeris, “Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications”, Scientific Reports, 6:35111, DOI: 10.1038/srep35111
  • [38] S. Leigh, R.J. Bradley, Ch.P. Purssell1, D.R. Billson, and D.A. Hutchins, “A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors”, PLOS ONE 7/11, November 2012, e49365
  • [39] E. Saleh, F. Zhang, Y. He, J. Vaithilingam, J. .Fernandez, R. Wildman, I. Ashcroft, R. Hague, P. Dickens, and Ch. Tuck, “3D Inkjet Printing of Electronics Using UV Conversion”, Adv. Mater. Technol. 2017, 1700134
  • [40] E. Saleha, P. Woolliamsb, B. Clarkeb, A. Gregoryb, S. Greedyc, Ch. Smarttc, R. Wildmana, I. Ashcrofta, R. Haguea, P. Dickensa, and Ch. Tucka, “3D inkjet-printed UV-curable inks for multi-functional electromagnetic applications”, Additive Manufacturing 13, 2017, 143–148
  • [41] M. Beauchamp, G. Nordin, and A. Wooley, “Moving from milifluidic to truly microfluidic sub-100-mm cross-section 3D printed devices”, Anal. Bioanal. Chem 4009, 2017, 4311‒4319
  • [42] K. Bhargava, B. Thompson, and N. Malmstadt, “Discrete element for 3D microfluidics”, PNAS 111/42, 2014, 15013‒15018
  • [43] A. Au, W. Lee, A. Folch, “Mail-order microfluidics: evaluation of stereolitogrpahy for the production of microfluidic devices”, Lab Chip 14, 2014, 1294‒1301
  • [44] A. Waldbaur, H. Rapp, K. Lange, and E. Rapp, “Let there be chip – towards rapid prototyping of microfluidic devices: one-step manufacturing processes”, Anal. Method. 3, 2011, 2681‒2716
  • [45] P. O’Neilm A. Azouz, M. Vagnez, J. Liu, S. Marczak, Z. Slouka, H. Chang, D. Diamnond, and D. Brabazon, “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications”, Biomicrofluidcs 8, 2014, 052112‒1
  • [46] P. Tseng, C. Murray, D. Kim, and D. Di Carlo, “Research highlights: printing the future of microfabrication”, Lab Chip 14, 2014, 1491‒1495
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdb0f764-860a-4012-adc8-f254f1540323
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.