PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of pulse shaper geometry on wave pulses in shpb experiments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of numerical analysis of the influence of pulse shaper geometry on wave signals in the split Hopkinson pressure bar experiment are presented. Five pulse shapers, i.e. square, ring, cross, star and disk ones have been analysed. It has been assumed that the disc pulse shaper is the reference geometry to assess the remaining types of pulse shapers. The results of numerical analyses have shown that pulse shapers with shapes different than disk are highly capable of minimizing high-frequency Pochhammer-Chree oscillations and, thus, reduce dispersion of waves propagating in the bar. The greatest damping ability has been observed while using the ring pulse shaper at both low and high impact velocities of the striker.
Rocznik
Strony
1217--1221
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • Military University of Technology, Warsaw, Poland
  • Military University of Technology, Warsaw, Poland
  • Military University of Technology, Warsaw, Poland
Bibliografia
  • 1. Chen W., Song B., 2011, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications, Berlin, Springer
  • 2. Chen W., Song B., Frew D.J., Forrestal M.J., 2003, Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar, Experimental Mechanics, 43, 1
  • 3. Chree C., 1886, Longitudinal vibrations of a circular bar, Quarterly Journal of Pure and Applied Mathematics, 21, 287-298
  • 4. Follansbee P.S., 1985, The Hopkinson Bar in Mechanical Testing and Evaluations, ASM Handbook, 9th ed. ASM Int., Materials Park Ohio
  • 5. Frantz C.E., Follansbee P.S., 1984, Experimental techniques with the split Hopkinson pressure bar, Proceedings of the 8th International Conference on High Energy Rate Fabrication, San Antonio, Texas, TX, 229-236
  • 6. Frew D.J., Forrestal M.J., Chen W., 2002., Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar, Experimental Mechanics, 42, 93-106
  • 7. Gorham D.A., 1991, The effect of specimen dimensions on high strain rate compression measurements of copper, Journal of Physics, D: Applied Physics, 24, 8, 1489-1492, https://doi.org/ 10.1088/0022-3727/24/8/041
  • 8. Grazka M., Janiszewski J., 2012, Identification of Johnson-Cook equation constants using finite element method, Engineering Transactions, 60, 215-223
  • 9. Hallquist J.O., 2006, Ls-Dyna. Theoretical Manual, California: Livermore Software Technology Corporation
  • 10. Naghdabadi R., Ashrafi M.J., Arghavanic J., 2012, Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test, Materials Science and Engineering A, 539, 285-293
  • 11. Nemat-Nasser S., Isaacs J.B., Starrett J.E., 1991, Hopkinson techniques for dynamic recovery experiments, Proceedings of the Royal Society, 435, 371-391
  • 12. Ozel T., Sima M., 2010, Finite element simulation of high speed machining Ti-6Al-4V alloy using modified material models, Transactions of NAMRI/SME, 38, 49-56
  • 13. Panowicz R., Janiszewski J., Traczyk M., 2017, Strain measuring accuracy with splitting- -beam laser extensometer technique at split Hopkinson compression bar experiment, Bulletin of the Polish Academy of Sciences Technical Sciences, 65, 2, 163-169, https://doi.org/10.1515/bpasts2017-0020
  • 14. Pochhammer L., 1876, On the propagation velocities of small oscillations in an unlimited isotropic circular cylinder, Journal f¨ur die reine und angewandte Mathematik, 81, 324-326
Uwagi
EN
SHORT RESEARCH COMMUNICATION
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdb0efc3-4cd2-457c-a818-2aaede4827a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.