PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bacterial population dynamics in waste oily emulsions from the metal-processing industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oil-containing wastewaters are regarded as main industrial pollutants of soil and water environments. They can occur as free-floating oil, unstable or stable oil-in-water (O/W) emulsions, and in the case of extreme organic load, as water-in-oil (W/O) emulsions. In this study two types of oily effluents, a typical O/W emulsion marked as E1 and a W/O emulsion E2, both discharged by local metal processing plants were examined to test their toxicity to microbial communities and the ability to serve as nutrient sources for bacterial growth. The organic contaminant load of the samples was evaluated on the basis of chemical oxygen demand (COD) parameter values and was equal to 48 200 mg O2dm-3 and >300 000 mg O2dm-3 for E1 and E2, respectively. Both emulsions proved to be non toxic to bacterial communities and were shown to contain biodiverse autochthonous microflora consisting of several bacterial strains adapted to the presence of xenobiotics (the total of 1.36 106 CFU cm-3 and 1.72 105 CFU cm-3 was determined for E1 and E2, respectively). These indigenous bacteria as well as exogenously inoculated specialized allochthonous microorganisms were biostimulated so as to proliferate within the wastewater environment whose organic content served as the only source of carbon. The most favorable cultivation conditions were determined as fully aerobic growth at the temperature of 25 ºC. In 9 to 18 day-tests, autochthonous as well as bioaugmented allochthonous bacterial population dynamics were monitored. For both emulsions tested there was a dramatic increase (up to three orders of magnitude) in bacterial frequency, as compared to the respective initial values. The resultant high biomass densities suggest that the effluents are susceptible to bioremediation. A preliminary xenobiotic biodegradation test confirmed that mixed auto- and allochthonous bacterial consortia obtained upon inoculation of the samples with microbiocenoses preselected for efficient hydrocarbon biodegradation led to a decrease in the organic pollution level.
Rocznik
Strony
14--22
Opis fizyczny
Bibliogr. 29 poz., tab, rys.
Twórcy
autor
  • Department of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Horticulture, University of Agriculture in Kraków, 29. Listopada Ave., 31-425 Kraków, Poland
autor
  • Department of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Horticulture, University of Agriculture in Kraków, 29. Listopada Ave., 31-425 Kraków, Poland
autor
  • Department of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Horticulture, University of Agriculture in Kraków, 29. Listopada Ave., 31-425 Kraków, Poland
Bibliografia
  • 1. Abdel-Raouf E.M. 2012. Crude Oil Emulsions - Composition Stability and Characterization. Croatia: InTech.
  • 2. Bakalova S., Doycheva A., Ivanova I., Groudeva V., Dimkov R. 2007. Bacterial microflora of contaminated metalworking fluids. Biotechnol. & Biotechnol. Eq., 21(4), 437-441.
  • 3. Bakalova S., Mincheva V., Doycheva A., Groudeva V., Dimkov R. 2008. Microbial toxicity of ethanoloamines. Biotechnol & Biotechnol Eq., 22(2), 716-720.
  • 4. Cheng C., Phipps D., Alkhaddar R.M. 2005. Treatment of spent metalworking fluids. Water Res., 39, 4051-4063.
  • 5. Coca J., Gutierrez G., Benito J.M. 2011. Treatment of oily wastewater. [In:] Water Purification and Management, J. Coca-Prados, G. Gutierrez-Cervello (Eds.), NATO Science for Peace and Security Series - C: Environmental Security, Dordrecht: Springer.
  • 6. da Silva E.J., Bianchi E.C., de Aguiar P.R. 2001. A Review of grinding fluids – performances and management. Revista de Ciencia & Technologia, 8(18), 67-77.
  • 7. Effluent Limitations Guidelines and New Source Performance Standards for the Metal Products and Machinery Point Source Category; Final Rule. Part II. 2003. U.S. Environmental Protection Agency, Rules and Regulations, Federal Register, 68(92), 25685-25745.
  • 8. Geier J., Lessmann H. 2006. Metalworking fluids. [In:] Contact dermaitis. 3rd edition, P.J. Frosch, T. Menne, J-P. Lepoittevin (Eds.), Berlin Heidelberg: Springer.
  • 9. Gerulova K., Mihalkova A., Sergovicova M., Guoth A., Nadasska Z. 2011. Exotoxicity and biodegradability assessment of metalworking fluids by activated sludge bacteria. Research Papers: Faculty of Materials Science and Technology in Trnava, 19(31), 45-56.
  • 10. Gilbert Y., Veillette M., Duchaine C. 2010. Metalworking fluids biodiversity characterization. J. Appl. Microbiol., 108(2), 437-449.
  • 11. Grijalbo L., Fernandez-Pascual M., Garcia-Seco D., Gutierrez-Manero F.J., Lucas J.A. 2013. Spent metal working fluids produced alterations on photosynthetic parameters and cell-ultrastructure of leaves and roots of maize plants. J. Hazard. Mater., 260, 220-230.
  • 12. Kaszycki P., Pawlik M., Petryszak P., Kołoczek H. 2010. Aerobic process for in situ bioremediation of petroleum-derived contamination of soil: a field study based on laboratory microcosm tests. Ecol. Chem. Eng. A, 17(4-5), 405-414.
  • 13. Kaszycki P., Petryszak P., Pawlik M., Kołoczek H. 2011. Ex situ bioremediation of soil polluted with oily waste: use of specialized microbial consortia for process bioaugmentation. Ecol. Chem. Eng. S, 18(1), 83-92.
  • 14. Kaszycki P., Szumilas P., Kołoczek H. 2001. Biopreparat przeznaczony do likwidacji środowiskowych skażeń węglowodorami i ich pochodnymi. Inż. Ekol., 4, 15–22.
  • 15. Kołoczek H., Kaszycki P. 2006. Bioremediacja zanieczyszczeń rafineryjnych w środowisku gruntowo-wodnym. [In:] Metody usuwania zanieczyszczeń węglowodorowych ze środowiska gruntowo-wodnego (Methods of hydrocarbon contaminants removal from ground-water environment), S. Rychlicki (Ed.), Uczelniane Wyd. Nauk.-Dydakt., AGH, Kraków.
  • 16. Lazarević F.B., Krstić I.M., Lazić M.L., Savić D.S., Skala D.U., Vejlković V.B. 2013. Scaling up the chemical treatment of spent oil-in-water emulsions from non-ferrous metal-processing plant. Hem. Ind., 67(1), 59-68.
  • 17. Liu H-M., Lin Y-H., Tsai M-Y., Lin W-H. 2010. Occurrence and characterization of culturable bacteria and fungi in metalworking environments. Aerobiologia, 26, 339-350.
  • 18. MacAdam J., Ozgencil H., Autin O., Pidou M., Temple C., Parsons S., Jefferson B. 2012. Incorporating biodegradation and advanced oxidation processes in the treatment of spent metalworking fluids. Environ. Technol., 33(24), 2741-2750.
  • 19. Mattsby-Baltzer I., Sandin M., Ahlström B., Allenmark S., Edebo M., Falsen E. 1989. Microbial growth and accumulation in industrial metal-working fluids. Appl. Environ. Microbiol., 55, 2681-2689.
  • 20. Mirer F.E. 2010. New Evidence on the Health Hazards and Control of Metalworking Fluids Since Completion of the OSHA Advisory Committee Report. Am. J. Ind. Med., 53(8), 792-801.
  • 21. Rabenstein A., Koch T., Remesch M., Brinksmeier E., Kuever J. 2009. Microbial degradation of water miscible metal working fluids. Int. Biodeter. Biodegr., 63(8), 1023-1029.
  • 22. Saha R., Donofrio R.S. 2012. Microbiology of metalworking fluids. Appl. Microbiol. Biotechnol., 92, 1119-1130.
  • 23. Selvaraju S.B., Khan I.U.H., Yadav J.S. 2008. Specific detection and quantification of culturable and non-culturable mycobacteria in metalworking fluids by fluorescence-based methods. Lett. Appl. Microbiol., 47(5), 451-456.
  • 24. Theaker D., Thompson I. 2010. The industrial consequences of microbial deterioration of metal working fluid. [In:] Handbook of hydrocarbon and lipid microbiology, K.N. Timmis (Ed.), Berlin Heidelberg: Springer-Verlag.
  • 25. Tillie-Leblond I., Grennouillet F., Reboux G., Roussel S., Chouraki B., Lothois C., Dalphin J-C., Wallaert B., Millon L. 2011. Hypersensitivity pneumonitis and metalworking fluids contaminated by mycobacteria. Eur. Respir. J., 37, 640-647.
  • 26. Trafny E.A. 2013. Microorganisms in metalworking fluids: current issues in research and management. Int. J. Occup. Med. Environ. Health., 26(1), 4-15.
  • 27. van der Gast C.J., Whiteley A.S., Lilley A.K., Knowles C.J., Thompson I.P. 2003. Bacterial community structure and function in a metal-working fluid. Environ. Microbiol., 5(6), 453-461.
  • 28. 28. Veillette M., Thorne P.S., Gordon T., Duchaine C. 2004. Six month tracking of microbial growth in a metalworking fluid after system cleaning and recharging. Ann. Occup. Hyg., 48, 541-546.
  • 29. Wang H., Reponen T., Lee S.A., White E., Grinshpun S.A. 2007. Size distribution of airborne mist and endotoxin-containing particles in metalworking fluid environments. J. Occup. Environ. Hyg., 4(3), 157-165.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdab5d15-ab31-43a2-adc8-aaff55b509c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.