PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of plasma expansion plumes in view of pulses laser irradiating centimeter-scale spherical space debris

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this article was to investigate the dynamic evolution behaviors of plasma expansion plumes by pulses laser irradiating centimeter-scale spherical space debris. A calculated model of centimeter-scale spherical space debris irradiated by pulses laser was firstly deduced based on FEM (finite element method)/COMSOL, and the action rules of plasma expansion plumes by pulses laser-generated irradiating the debris were simulated for different laser powers and action times. The results showed that the velocity of plasma expansion plumes was increased with the increase of laser powers and action times. Especially, when the laser power was 700 kW and the action time was close to 25 μs, the maximum velocity of plasma expansion plumes approached 1.91 km/s, and the diffusion radius of plasma expansion plumes was increased by about 2.5 mm. Further, the diffusion radius was about twice that of 400 kW when the action time reached about 48 μs. As a result, by simulating the transient flow process of nanosecond pulses laser irradiating small spherical space debris, the flow field evolution information and plasma plumes evolution characteristics of centimeter-scale space debris at nanosecond time resolution were revealed.
Czasopismo
Rocznik
Strony
363--375
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Xi'an International University, Yudou Road 18, Xi’an 710077, PR China
Bibliografia
  • [1] SONG B., LI K., TANG H.W., Recent developments in foreign space debris removal, Space International 509, 2021: I4-I9.
  • [2] BELKIN S.O., KUZNETSOV E.D., Orbital flips due to solar radiation pressure for space debris in near-circular orbits, Acta Astronautica 178, 2021: 360-369. https://doi.org/10.1016/j.actaastro.2020.09.025
  • [3] LI M., GONG Z.Z., LIU G.Q., Frontier technology and system development of space debris surveillance and active removal, Chinese Science Bulletin 63(25), 2018: 2570-2591. https://doi.org/10.1360/N972017-00880
  • [4] MARK C.P., KAMATH S., Review of active space debris removal methods, Space Policy 47, 2019: 194-206. https://doi.org/10.1016/j.spacepol.2018.12.005
  • [5] PHIPPS C., LUKE J., FUNK D., MOORE D., GLOWNIA J., LIPPERT T., Laser impulse coupling at 130 fs, Applied Surface Science 252(13), 2006: 4838-4844. https://doi.org/10.1016/j.apsusc.2005.07.079
  • [6] LEVCHENKO I., BARANOV O., FANG J.H., CHERKUN O., XU S.Y., BAZAKA K., Focusing plasma jets to achieve high current density: Feasibility and opportunities for applications in debris removal and space exploration, Aerospace Science and Technology 108, 2021: 106343. https://doi.org/10.1016/j.ast.2020.106343
  • [7] PHIPPS C.R., A laser-optical system to re-enter or lower low Earth orbit space debris, Acta Astronautica 93, 2014: 418-429. https://doi.org/10.1016/j.actaastro.2013.07.031
  • [8] SHEN S.Y., JIN X., LI Q., Laser ablation expansion plume performance experiments with typical material of orbital debris, High Power Laser and Particle Beams 27(5), 2015: 051014. https://doi.org/10.11884/HPLPB201527.051014
  • [9] TRAN D.T., YOGO A., NISHIMURA H., MORI K., Impulse and mass removal rate of aluminum target by nanosecond laser ablation in a wide range of ambient pressure, Journal of Applied Physics 122(23), 2017: 233304. https://doi.org/10.1063/1.5005584
  • [10] CICHOCKI F., MERINO M., AHEDO E., Spacecraft-plasma-debris interaction in an ion beam shepherd mission, Acta Astronautica 146, 2018: 216-227. https://doi.org/10.1016/j.actaastro.2018.02.030
  • [11] CHEN C., GONG Z.Z., YANG W.L., et al., Influence of geometry of space debris on laser ablation impulse, Chinese Journal of High Pressure Physics 32(4), 2018: 040101.
  • [12] LAPUSHKINA T.A., EROFEEV A.V., AZAROVA O.A., KRAVCHENKO O.V., Interaction of a plane shock wave with an area of ionization instability of discharge plasma in air, Aerospace Science and Technology 85, 2019: 347-358. https://doi.org/10.1016/j.ast.2018.12.020
  • [13] ZHOU W.J., CHANG H., YE J.F., LI N.L., Impulse of planar and sphere target by nanosecond laser ablation in a large beam spot, Laser Physics 30(6), 2020: 066002. https://doi.org/10.1088/1555-6611/ab84e0
  • [14] FANG Y.W., Dynamic deorbit of small-sized space debris in near-Earth orbit in view of space-based pulse laser, Journal of Laser Applications 34(2), 2022: 022018. https://doi.org/10.2351/7.0000662
  • [15] FANG Y.W., PAN J., LUO Y.J., C.W. LI, Effects of deorbit evolution on space-based pulse laser irradiating centimeter-scale space debris in LEO, Acta Astronautica 165, 2019: 184-190. https://doi.org/10.1016/j.actaastro.2019.09.010
  • [16] ALI M., HENDA R., Modeling of plasma expansion during pulsed electron beam ablation of graphite, MRS Advances 2, 2017: 905-911. https://doi.org/10.1557/adv.2017.83
  • [17] SONG L.H., WEI Q., BAI Y., GAO C., Impact effects on fused quartz glass by ground simulating hypervelocity space debris, Science China Technological Sciences 56(3), 2013: 724-731. https://doi.org/10.1007/s11431-012-5126-9
  • [18] PHIPPS C.R., TURNER T.P., HARRISON R.F., YORK G.W., OSBORNE W.Z., ANDERSON G.K., CORLIS X.F., HAYNES L.C., STEELE H.S., SPICOCHI K.C., KING T.R., Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers, Journal of Applied Physics 64(3), 1988: 1083-1096. https://doi.org/10.1063/1.341867
  • [19] LIEDAHL D.A., RUBENCHIK A., LIBBY S.B., NIKOLAEV S., PHIPPS C.R., Pulsed laser interactions with space debris: Target shape effects, Advances in Space Research 52(5), 2013: 895-915. https://doi.org/10.1016/j.asr.2013.05.019
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdaac3a6-3f37-4f65-b09d-facb64ad33f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.