PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemical and faunal proxies in the Westphalian A (Langsettian) marine horizon of the Lublin Coal Basin

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The uppermost Westphalian marine horizon (Dunbarella horizon) is especially important for correlation of Carboniferous deposits in the Lublin Coal Basin and in other basins of the Northwest European Carboniferous Basin. The Dunbarella horizon is characterized by cyclic sedimentation and consequent faunal spectrum variability, typical for Westphalian marine horizons of northwestern Europe. Palaeontological study of the Dunbarella horizon showed the presence of macrofauna representing different palaeoenvironments, from marine to brackish (non-marine) and freshwater conditions. The vertical sea level fluctuations and changes in seawater salinity resulting in palaeontological record changes do not link with geochemical proxies. TOC, redox-sensitive trace element concentrations, and V/Cr, Ni/Co and V/(V + Ni) ratios generally suggest that the Dunbarella horizon sediments were deposited under predominantly oxic conditions (with local exceptions during the initial phase of the Dunbarella ingression; Kopina 1 borehole).
Rocznik
Strony
751--764
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Institute of Applied Geology, Akademicka 2, 44-100 Gliwice, Poland
Bibliografia
  • 1. Algeo, T.J., 2004. Can marine anoxic events draw down the trace-element inventory of seawater? Geology, 32: 1057-1060.
  • 2. Algeo, T.J., Lyons, T.W., 2006. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21: PA1016.
  • 3. Algeo, T.J., Maynard, J.B., 2004.Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206: 289-318.
  • 4. Algeo, T.J., Maynard, J.B., 2008. Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments. Geosphere, 4: 872-887.
  • 5. Algeo, T.J., Rowe, H., 2012. Paleoceanographic applications of trace-metal concentration data. Chemical Geology, 324-325: 6-18.
  • 6. Algeo, T.J., Tribovillard, N., 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268: 211-225.
  • 7. Berner, R.A., 1970. Sedimentary pyrite formation. American Journal of Science, 268: 1-23.
  • 8. Berner, R.A., Raiswell, R., 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47: 855-862.
  • 9. Berner, R.A., Raiswell, R., 1984. C/S method for distinguishing freshwater from marine sedimentary rock. Geology, 12: 365-368.
  • 10. Brumsack, H-J., 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232: 344-361.
  • 11. Calver, M.A., 1968. Distribution of Westphalian marine faunas in Northern England and adjoining areas. Proceedings of the Yorkshire Geological Society, 37: 1-72.
  • 12. Calvert, S.E., Pedersen, T.F., 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113: 67-88.
  • 13. Cruse, A.M., Lyons, T.W., 2000. Sedimentology and geochemistry of the Hushpuckney and Upper Tackett shales: cyclothem models revisited. Oklahoma Geological Survey Circular, 103: 185-194.
  • 14. Dill, H., Teschner, M., Wehner, H., 1988. Petrography, inorganic and organic geochemistry of Lower Permian carbonaceous fan sequences (“Brandschiefer Series”) - Federal Republic of Germany: constraints to their palaeogeography and assessment of their source rock potential. Chemical Geology, 67: 307-325.
  • 15. Dusar, M., 2006. Chokierian. Geologica Belgica, 9: 177-187.
  • 16. Fisher, Q.J., Wignall, P.B., 2001. Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata England. Chemical Geology, 175: 605-621.
  • 17. Hampson, G., Stollhofen, H., Flint, S., 1999. A sequence stratigraphic model for the Lower Coal Measures (Upper Carboniferous) of the Ruhr district, north-west Germany. Sedimentology, 46: 1199-1231.
  • 18. Hatch, J.R., Leventhal, J.S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99: 65-82.
  • 19. Heckel, P.H., Clayton, G., 2006. The Carboniferous System. Use of the new official names for the subsystems, series, and stages. Geologica Acta, 4: 403-407.
  • 20. Joachimski, M.M., von Bitter, P.H., Buggisch, W., 2006. Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes on conodont apatite. Geology, 34: 277-280.
  • 21. Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111: 111-129.
  • 22. Kombrink, H., 2008. The Carboniferous of the Netherlands and surrounding areas; a basin analysis. Geologica Ultraiectina, 294: 1-184.
  • 23. Krzeszowska, E., 2015. New data on the development of the Dunbarella marine marker horizon in the Lublin Coal Basin (Poland). International Journal of Coal Geology, 150-151:170-180.
  • 24. Kombrink, H., van Os, B.J.H., van der Zwan, C.J., Wong, T.E., 2008 . Geochemistry of marine and lacustrine bands in the Upper Carboniferous of the Netherlands. Netherlands Journal of Geosciences, 87: 309-322.
  • 25. Krzeszowska, E., Kokowska-Pawłowska, M., 2017. Geochemical characterization of the freshwater faunal horizons of the Lublin formation from the Lublin Coal Basin. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 33: 5-30.
  • 26. Leeder, M.R., 1988. Recent developments in Carboniferous geology; a critical review with implications for the British Isles and N.W. Europe. Proceedings of the Geologists' Association, 99: 73-100.
  • 27. Leeder, M.R., Raiswell, R., Al-Biatty, H., Mcmahon, A., Hardmann, M., 1990. Carboniferous stratigraphy, sedimentation and correlation of well 48/3-3 in the southern North Sea Basin: integrated use of palynology, natural gama/sonic logs and carbon/sulfur Geochemistry. Geological Society of London Journal, 147: 287-300.
  • 28. Leventhal, J.S., 1987. Carbon and sulfur relationships in Devonian shales from the Appalachian Basin as an indicator of environment of deposition. American Journal of Science, 287: 33-49.
  • 29. Ludwig, A.O., 1994. Cyclic sedimentation and climatically caused sea-level changes in the Late Palaeozoic of Central Europe. Geologische Rundschau, 83: 799-810.
  • 30. Marynowski, L., Pisarzowska, A., Derkowski, A., Rakociński, M., Szaniawski, R., Środoń, J., Cohen, A.S., 2017. Influence of palaeoweathering on trace metal concentrations and environmental proxies in black shales. Palaeogeography, Palaeoclimatology, Palaeoecology, 472: 177-191.
  • 31. Marynowski, L., Zatoń, M., Rakociński, M., Filipiak, P., Kurkiewicz, S., Pearce , T.J., 2012. Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. Palaeogeography, Palaeoclimatology, Palaeoecology, 346-347: 66-86.
  • 32. Musiał, Ł., Tabor, T., 2001. Korelacja biostratygraficzna karbonu górnego Polski z innymi obszarami na podstawie makro- i mikrofauny (in Polish). Atlas skamieniałości przewodnich i charakterystycznych. Karbon. Budowa Geologiczna Polski, III, 22-26, Państwowy Instytuty Geologiczny, Warszawa.
  • 33. Musiał, Ł., Tabor, M., Żakowa, H., 1995. Macrofauna (in Polish). Prace Państwowego Instytutu Geologicznego,148: 23-44.
  • 34. Narkiewicz, M., 2007. Development and inversion of Devonian and Carboniferous basins in the eastern part of the Variscan foreland (Poland). Geological Quarterly, 51 (3): 231-256.
  • 35. Pearce, T.J., McLean, D., Martin, J.H., Ratcliffe, K., Wray, D.S., 2010. A whole-rock geochemical approach to the recognition and correlation of “Marine Bands”. SEPM Special Publication, 94: 221-238.
  • 36. Porzycki, J., Zdanowski, A., 1995. Southeastern Poland (Lublin Carboniferous Basin). Prace Państwowego Instytutu Geologicznego, 148: 102-109.
  • 37. Racka, M., Marynowski, L., Filipiak, P., Sobste, l.M., Pisarzowska, A., Bond, D.P.G., 2010. Anoxic Annulata Events in the Late Famennian of the Holy Cross Mountains (Southern Poland).Geochemical and palaeontological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 297: 549-575.
  • 38. Racki, G., Baliński, A., Wrona, R., Małkowski, K., Drygant, D., Szaniawski, H., 2012. Faunal dynamics across the Silurian-Devonian positive isotope excursions (δ13C, δ18O) in Podolia, Ukraine: comparative analysis of the Ireviken and Klonk events. Acta Palaeontologica Polonica, 57: 795-832.
  • 39. Raiswell, R., Al-Biatty, H.J., 1989. Depositional and diagenetic C-S-Fe signatures in early Paleozoic normal marine shales. Geochimica et Cosmochimica Acta, 53: 1147-1152.
  • 40. Raiswell, R., Berner, R.A., 1986. Pyrite and organic matter in Phanerozoic normal marine shales. Geochimica et Cosmochimica Acta, 50: 1967-1976.
  • 41. Raiswell, R., Buckley, F., Berner, R.A., Anderson, T.F., 1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. Journal of Sedimentary Petrology, 58: 812-819.
  • 42. Richards, B.C., 2013. Current status of the International Carboniferous Time Scale. Museum of Natural History and Sciences Bulletin, 60: 348-353.
  • 43. Rimmer, S.M., 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chemical Geology, 206: 373-391.
  • 44. Rimmer, S.M., Thompson, J.A., Goodnight, S.A., Robl, T.L., 2004. Multiple controls on the preservation of organic matter in Devonian - Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215: 125-154.
  • 45. Rygel, M.C., Fielding, Ch.R., Frank, T.D., Birgenheier, L.P., 2008. The magnitude of Late Paleozoic glacioeustatic fluctuations. A synthesis. Journal of Sedimentary Research, 78: 500-511.
  • 46. Suess, M.P., Drozdzewski, G., Schaefer, A., 2007. Sedimentary environment dynamics and the formation of coal in the Pennsylvanian Variscan foreland in the Ruhr Basin (Germany, Western Europe). International Journal of Coal Geology, 69: 267-287.
  • 47. Szczepanik, P., Witkowska, M., Sawłowicz, Z., 2007. Geochemistry of Middle Jurassic mudstones (Kraków-Częstochowa area, southern Poland): interpretation of the depositional redox conditions. Geological Quarterly, 51 (1): 57-66.
  • 48. Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232: 12-32.
  • 49. Waksmudzka, M.I., 2013. Carboniferous coarsening-upward and non-gradational cyclothems in the Lublin Basin (SE Poland): palaeoclimatic implications. Geological Society Special Publications, 376: 141-175.
  • 50. Wedepohl, K.H., 1991. The composition of the upper earth's crustand the natural cycles of selected metals. Metals in natural raw materials. Natural Resources. In: Metals and their compounds in the environment (ed. E. Merian): 3-17 VCH, Weinheim, Germany.
  • 51. Wignall, P.B., 1994. Black Shales. Clarendon Press, Oxford.
  • 52. Wignall, P.B., Myers, K.J., 1988. Interpreting benthic oxygen levels in mudrocks: a new approach. Geology, 16: 452-455.
  • 53. Wójcik-Tabol, P., 2015. Depositional redox conditions of the Grybów Succession (Oligocene, Polish Carpathians) in the light of petrological and geochemical indices. Geological Quarterly, 59(4): 603-614.
  • 54. Zatoń, M., Marynowski, L., Szczepanik, P., Bond, D.P.G., Wignall, P.B., 2009. Redox conditions during sedimentation of the Middle Jurassic (Upper Bajocian-Bathonian) clays of the Polish Jura (south-central Poland): an integrated approach. Facies, 55: 103-114.
  • 55. Zdanowski, A. ed., 1999. Atlas geologiczny Lubelskiego Zagtębia Węglowego 1:500000 (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 56. Ziegler, P.A., 1989. Evolution of Laurussia - a study in Late Palaeozoic plate tectonics. Kluwer Academic Publishers. Dordrecht, Boston, London.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdaa2d0c-4af2-4a96-a69e-de4787e793ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.