PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear postbuckling behavior of auxetic-core toroidal shell segments with Graphene reinforced face sheets under axial loads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this paper is to provide an analytical approach for the nonlinear buckling behaviors of toroidal shell segments made by three layers included honeycomb auxetic-core and two Graphene reinforced face sheets under axial compressive or tensile loads. The auxetic core is designed in a honeycomb form and three distribution laws of Graphene are considered for two symmetric face sheets. The homogenization technique for honeycomb auxetic plates and shells is applied to establish the stiffness formulations of the core. By approximating the doubly curved coordinate to the simpler coordinate with the Stein and McElman assumption, the nonlinear basic equations are formulated using the nonlinear Donnell shell theory and the model of the two-parameter foundation. The Galerkin method can be performed three times for three states of buckling responses and the expressions of the load-deflection postbuckling curves can be determined. The numerical examinations present that the bifurcation buckling occurs with both axial tensile and compressive loads for convex and concave shells and the significantly beneficial effects of auxetic core and functionally graded Graphene reinforced face sheets on nonlinear buckling responses of shell segments.
Rocznik
Strony
89--108
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
  • Faculty of Civil Engineering, University of Transport Technology, Hanoi 100000, Vietnam
autor
  • Faculty of Civil Engineering, University of Transport Technology, Hanoi 100000, Vietnam
autor
  • Faculty of Civil Engineering, University of Transport Technology, Hanoi 100000, Vietnam
  • Faculty of Civil Engineering, University of Transport Technology, Hanoi 100000, Vietnam
autor
  • Faculty of Civil Engineering, University of Transport Technology, Hanoi 100000, Vietnam
Bibliografia
  • 1. M. Stein, J.A. Mcelman, Buckling of segments of toroidal shells, AFAA Journal, 3, 1704–1709, 1965.
  • 2. M. Koizumi, The concept of FGM, Ceramic Transactions, Functionally Gradient Materials, 34, 3–10, 1993.
  • 3. H. Huang, Q. Han, Nonlinear elastic buckling and postbuckling of axially compressed functionally graded cylindrical shells, International Journal of Mechanical Sciences, 51, 7, 500–507, 2009.
  • 4. H. Huang, Q. Han, Stability of pressure-loaded functionally graded cylindrical shells with inelastic material properties, Thin-Walled Structures, 92, 21–28, 2015.
  • 5. A.H. Sofiyev, E. Schnack, The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading, Engineering Structures, 26, 10, 1321–1331, 2004.
  • 6. A. Moosaie, Axisymmetric steady temperature field in FGM cylindrical shells with temperature-dependent heat conductivity and arbitrary linear boundary conditions, Archives of Mechanics, 67, 3, 233–251, 2015.
  • 7. A.Y. Ali, H.M. Hasan, Nonlinear dynamic stability of an imperfect shear deformable orthotropic functionally graded material toroidal shell segments under the longitudinal constant velocity, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233, 19–20, 6827–6850, 2019.
  • 8. A.H. Sofiyev, S.E. Huseynov, N. Kuruoglu, Influence of mixed boundary conditions and heterogeneity on the vibration behavior of orthotropic truncated conical shells, Archives of Mechanics, 67, 4, 331–348, 2015.
  • 9. V.H. Nam, N.T. Phuong, N.T. Trung, Nonlinear buckling and postbuckling of Sandwich FGM cylindrical shells reinforced by spiral stiffeners under torsion loads in thermal environment, Acta Mechanica, 230, 3183–3204, 2019.
  • 10. V.H. Nam, N.T. Phuong, C.V. Doan, N.T. Trung, Nonlinear thermo-mechanical stability analysis of eccentrically spiral stiffened sandwich functionally graded cylindrical shells subjected to external pressure, International Journal of Applied Mechanics, 11, 05, 1950045, 2019.
  • 11. N.T. Phuong, N.T. Trung, T.D. Kien, H.D. Tuan, V.H. Nam, Nonlinear vibration of full-filled fluid corrugated sandwich functionally graded cylindrical shells, Journal of Vibration and Control, 27, 9–10, 1020–1035, 2021.
  • 12. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56–58, 1991.
  • 13. H.S. Shen, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part I: Axially-loaded shells, Composite Structures, 93, 8, 2096–2108, 2011.
  • 14. H.S. Shen, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part II: Pressure-loaded shells, Composite Structures, 93, 10, 2496–2503, 2011.
  • 15. Z.X. Lei, L.W. Zhang, K.M. Liew, J.L. Yu, Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels, Computer Methods in Applied Mechanics and Engineering, 273, 1–18, 2014.
  • 16. Z.X. Lei, L.W. Zhang, K.M. Liew, J.L. Yu, Postbuckling of carbon nanotubereinforced functionally graded cylindrical panels under axial compression using a meshless approach, Computer Methods in Applied Mechanics and Engineering, 268, 1–17, 2014.
  • 17. Z.X. Lei, L.W. Zhang, K.M. Liew, J.L. Yu, Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method, Composite Structures, 113, 328–338, 2014.
  • 18. M.H. Hajmohammad, R. Kolahchi, M.S. Zarei, M. Maleki, Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects, Composite Structures, 187, 498–508, 2018.
  • 19. V.H. Nam, N.T. Trung, N.T. Phuong, V.M. Duc, V.T. Hing, Nonlinear torsional buckling of functionally graded carbon nanotube orthogonally reinforced composite cylindrical shells in thermal environment, International Journal of Applied Mechanics, 12, 7, 2050072, 2020.
  • 20. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666–669, 2004.
  • 21. H.S. Shen, Y. Xiang, F. Lin, Nonlinear bending of functionally graded graphene reinforced composite laminated plates resting on elastic foundations in thermal environments, Composite Structures, 170, 80–90, 2017.
  • 22. H.S. Shen, Y. Xuang, Postbuckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compression in thermal environments, Computer Methods in Applied Mechanics and Engineering, 330, 64–82, 2018.
  • 23. H.S. Shen, Y. Xiang, Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments, Thin-Walled Structures, 124, 151–160, 2018.
  • 24. L.N. Ly, N.T. Phuong, V.H. Nan, N.T. Trung, V.M. Duc, An analytical approach of nonlinear thermo-mechanical buckling of functionally graded graphene-reinforced composite laminated cylindrical shells under compressive axial load surrounded by elastic foundation, Journal of Applied and Computational Mechanics, 6, 2, 357–372, 2020.
  • 25. Y. Kiani, Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment, Composites Part B: Engineering, 156, 128–137, 2019.
  • 26. Y. Kiani, NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates, Thin-Walled Structures, 125, 211–219, 2018.
  • 27. Y. Kiani, Isogeometric large amplitude free vibration of graphene reinforced laminatem plates in thermal environment using NURBS formulation, Computer Methods in Applied Mechanics and Engineering, 332, 86–101, 2018.
  • 28. N.T. Phuong, V.H. Nam, N.T. Trung, V.M. Duc, N.V. Loi, N.D. Thinh, P.T. Tu, Thermomechanical postbuckling of functionally graded graphene-reinforced composite laminatem toroidal shell segments surrounded by Pasternak’s elastic foundation, Journal ofThermoplastic Composite Materials, 34, 10, 1380–1407, 2021.
  • 29. N.T. Phuong, N.T. T.rung, C.V. Doan, N.D. Thang, V.M. Duc, V.H. Nam, Nonlinear thermomechanical buckling of FG-GRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure, Acta Mechanica, 231, 5125–5144, 2020.
  • 30. N.T. Phuong, V.M. Duc, C.V. Doan, V.H. Nam, Nonlinear torsional buckling of functionally graded graphene-reinforced composite (FG-GRC) laminated cylindrical shells stiffened by FG-GRC laminated stiffeners in thermal environment, Polymer Composites, 42, 6, 3051–3063, 2021.
  • 31. V.H. Nam, N.T. Phuong, H.S. Lanh, V.M. Duc, C.V. Doan, Nonlinear buc kling analysis of stiffened FG-GRC laminated cylindrical shells subjected to axial compressive load in thermal environment, Mechanics Based Design of Structures and Machines, https://doi.org/10.1080/15397734.2021.1932522, 2021.
  • 32. H. Eipakchi, F. Mahboubi Nasrekani, Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure, Composite Structures, 254, 112847, 2020.
  • 33. Z. Xiufang, Z. Junhua, Z. Wei, C. Jie, Vibration frequencies and energies of an auxetic honeycomb sandwich plate, Mechanics of Advanced Materials and Structures, 26, 23, 1951–1957, 2019.
  • 34. X.K. Lan, S.S. Feng, Q. Huang, T. Zhou, A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores, Aerospace Science and Technology, 87, 37–47, 2019.
  • 35. C. Luo, C.Z. Han, X.Y. Zhang, X.G. Zhang, X. Ren, Y.M. Xie, Design, manufacturing and applications of auxetic tubular structures: a review, Thin-Walled Structures, 163, 107682, 2021.
  • 36. J.S. Hu, B.L. Wang, Crack growth behavior and thermal shock resistance of ceramic sandwich structures with an auxetic honeycomb core, Composite Structures, 260, 113256, 2021.
  • 37. L.N. Ly, V.M. Duc, N.T. Trung, N.T. Phuong, D.T. Dong, T.Q. Minh, N.V. Tien, V.T. Hung, An analytical approach to the nonlinear buckling behavior of axially compressed auxetic-core cylindrical shells with carbon nanotube-reinforced face sheets, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235, 10, 2254–2265, 2021.
  • 38. N.V. Tien, V.M. Duc, V.H. Nam, N.T. Phuong, H.S. Lanh, D.T. Dong, L.N. Ly, D. Hung, T.Q. Minh, Nonlinear postbuckling of auxetic-core sandwich toroidal Shell segments with CNT-reinforced face sheets under external pressure, International Journal of Structural Stability and Dynamics, doi.org/10.1142/S0219455422500067, 2021.
  • 39. D.D. Brush, B.O. Almroth, Buckling of Bars, Plates and Shells, Mc Graw-Hill, London, 1975.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fda6bd11-d5c0-4af3-8b79-73592edf9f79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.