Identyfikatory
Warianty tytułu
Metale ciężkie w osadach dennych Zbiornika Dobczyckiego i jego dopływów oraz ocena zagrożenia środowiskowego – przegląd literaturowy
Języki publikacji
Abstrakty
Most transported particles released from a catchment area are deposited and accumulated in the sediment layers of water reservoirs. Along with mineral particles, contaminants originating from human activity and natural processes are added to such aquatic systems (e.g., heavy metals). This is an especially important issue when a reservoir is being used as a source of drinking water. The main aim of this study was the environmental risk assessment of the sediment in the Dobczyce Reservoir and two of its tributaries (the Raba River and Wolnica Stream) during the years of 2004–2007 and 2016, 2017. Substantial variations in heavy metals were found due to the land use and catchment management. The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate.
Zbiornik wodny to obszar, na którym większość transportowanych cząstek uwalnianych ze zlewni osadza się i akumuluje w osadach dennych. Razem z cząstkami mineralnymi do ekosystemów wodnych przedostają się również inne zanieczyszczenia (np. metale ciężkie), które są efektem działalności antropogenicznej, a także procesów naturalnych. Jest to szczególnie niebezpieczne, gdy zbiornik używany jest jako źródło wody pitnej. Głównym celem tego badania była ocena zagrożenia środowiskowego w osadach dennych Zbiornika Dobczyckiego oraz jego dopływów: Raby i potoku Wolnica w różnych latach (odpowiednio 2004–2007, 2016, 2017). Stwierdzono, że różny sposób użytkowania i zagospodarowania zlewni miał wpływ na znaczne wahania stężeń metali ciężkich, a ocena zagrożenia środowiskowego wskazała zanieczyszczenie od niskiego do umiarkowanego.
Czasopismo
Rocznik
Tom
Strony
63--75
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Cracow University of Technology, Faculty of Environmental Engineering, Department of Environmental Technologies, Krakow, Poland
Bibliografia
- [1] Szarek-Gwiazda E., Czaplicka-Kotas A., Szalinska E.: Background concentrations of Nickel in the sediments of the Carpathian Dam Reservoirs (Southern Poland). Clean – Soil, Air, Water, vol. 39, no. 4, 2011, pp. 368–375.
- [2] Reczynski W., Jakubowska M., Golas J., Parker A., Kubica B.: Chemistry of sediments from the Dobczyce Reservoir, Poland, and the environmental implications. International Journal of Sediment Research, vol. 25, no. 1, 2010, pp. 28–38.
- [3] Szarek-Gwiazda E.: Czynniki kształtujące stężenia metali ciężkich w rzece Rabie i niektórych karpackich zbiornikach zaporowych. Studia Naturae 60, Instytut Ochrony Przyrody, Kraków 2013.
- [4] Mazurkiewicz-Boroń G.: Parametry siedliskowe i troficzne. [in:] Starmach J., Mazurkiewicz-Boroń G. (red.), Zbiornik Dobczycki. Ekologia. Eutrofizacja. Ochrona, Zakład Biologii Wód PAN, Kraków 2000, pp. 63–80.
- [5] Pawełek J., Spytek M.: Stężenie związków biogennych w wodzie potoków dopływających do Zbiornika Dobczyckiego. Infrastruktura i Ekologia Terenów Wiejskich, nr 5, 2008, pp. 179–190.
- [6] Sądag T., Banduła T., Materek E., Mazurkiewicz-Boroń G., Słonka R. (red.): Zbiornik wodny Dobczyce: monografia. Monografie Budowli Hydrotechnicznych w Polsce, Regionalny Zarząd Gospodarki Wodnej, Kraków 2016.
- [7] Szarek-Gwiazda E., Sadowska I.: Distribution of grain size and organic matter content in sediments of submontane dam reservoir. Environment Protection Engineering, vol. 36, no. 1, 2010, pp. 113–124.
- [8] Kędra M.: Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains). Journal of Hydrology, vol. 509, 2014, pp. 474–503.
- [9] Nachlik E. (red.): Identyfikacja i ocena oddziaływań antropogenicznych na zasoby wodne zlewni Raby wraz z oszacowaniem ryzyka nieosiągnięcia celów środowiskowych. Monografia – Politechnika Krakowska im. Tadeusza Kościuszki, 340, Wydawnictwo Politechniki Krakowskiej, Kraków 2006.
- [10] Corine Land Cover: [on-line:] http://land.copernicus.eu/pan-european/ corine-land-cover/clc-2012 [access: 3.03.2017].
- [11] Gołaś J., Kubica B., Reczyński W., Kwiatek M.W., Jakubowska M., Skiba M., Stobiński M., Dutkiewicz E.M., Posmyk G., Jones K., Olko M., Górecki J.: Preliminary studies of sediments from the Dobczyce Drinking Water Reservoir. Polish Journal of Environmental Studies, vol. 14, no. 5, 2005, pp. 577–584.
- [12] Müller G.: The heavy metal pollution of the sediments of Neckars and its tributary: a stocktaking. Chemische Zeitung, vol. 150, 1981, pp. 157–164.
- [13] Turekian K.K., Wedepohl K.H.: Distribution of the Elements in some major units of the Earth’s crust. Geological Society of America Bulletin, vol. 72, no. 2, 1961, pp. 175–193.
- [14] Helios-Rybicka E.: Rola minerałów ilastych w wiązaniu metali ciężkich przez osady rzeczne górnej Wisły. Zeszyty Naukowe Akademii Górniczo-Hutniczej im. Stanisława Staszica, Geologia, 32, Kraków 1986.
- [15] Martin J., Meybeck M.: Elemental Mass-Balance of Material Carried by Major World Rivers. Marine Chemistry, vol. 7, no. 3, 1979, pp. 173–206.
- [16] Hakanson L.: An ecological risk index for aquatic pollution control. A Sedimentological approach. Water Research, vol. 14, no. 8, 1980, pp. 975–1001.
- [17] Tomilson D.L., Wilson J.G., Harris C.R., Jeffrey D.W.: Problems in the assessment of heavy metals in estuaries and the formation of pollution index. Helgolander Meeresuntersuchungen, vol. 33, no. 1–3, 1980, pp. 566–575.
- [18] Daskalakis K., O’Connor T.: Normalization and elemental sediment contamination in the coastal United States. Environmental Science and Technology, vol. 29, no. 2, 1995, pp. 470–477.
- [19] Buat-Menard P., Chesselet R.: Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science letters, vol. 42, no. 3, 1979, pp. 399–411.
- [20] Birch G.: A scheme for assessing human impacts on coastal aquatic environments using sediments. [in:] Woodcoffe C.D., Furness R.A. (eds.), Coastal GIS 2003: an integrated approach to Australian coastal issues, Wollongong University Papers in Center for Maritime Policy, Australia 2003.
- [21] MacDonald D.D., Ingersoll C.G., Berger T.A.: Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology, vol. 39, no. 1, 2000, pp. 20–31.
- [22] Szarek-Gwiazda E., Mazurkiewicz-Boroń G.: Influence of cadmium and lead partitioning in water and sediment on their deposition in the sediment of a eutrophic dam reservoir. International Journal of Oceanography and Hydrobiology, vol. 35, no. 2, 2006, pp.141–157.
- [23] Salomons W., de Rooij, N., Kerdijk H., Bril J.: Sediment as a source for contaminants?. Hydrobiologia, vol. 149, no. 1, 1987, pp. 13–30.
- [24] Szarek-Gwiazda E., Amirowicz A., Gwiazda R.: Trace element concentrations in fish and bottom sediments of a eutrophic dam reservoir. Oceanological and Hydrobiological Studies, vol. 35, no. 4, 2006, pp. 331-352.
- [25] Malec P., Myśliwa-Kurdziel B., Prasad M.N.V., Waloszek A., Strzałka K.: Role of aquatic macrophytes in biogeochemical cycling of heavy metals, relevance to soil-sediment continuum detoxification and ecosystem health. [in:] Sherameti I., Varma A. (eds.), Detoxification of Heavy Metals, Soil Biology, vol. 30, Springer, Berlin – Heidelberg 2011, pp. 345–368.
- [26] Fleituch T.: Relationships among nutrients, algae, and sediments between two different lotic ecotones (Dobczyce Reservoir, southern Poland). Polskie Archiwum Hydrobiologii, t. 47, nr 2, 2000, pp. 225–246.
- [27] Forstner U., Calmano W.: Bindungsformen von Schwermetallen in Baggerschlämmen. Vom Wasser, vol. 59, 1982, pp. 83–93.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fda69fc9-ee14-46f6-8a0a-74df3c7ccb7c