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Abstract. Matrix Mittag‑Leffler functions play a key role in numerous applications related to systems with fractional dynamics. That is 
why the methods for computing the matrix Mittag‑Leffler function are so important. The matrix Mittag‑Leffler function is a generalization 
of matrix exponential function. This implies that some of numerous existing methods for computing the matrix exponential can be adapted 
for matrix Mittag‑Leffler functions as well. Unfortunately, the technique of scaling and squaring, widely used in computing of the matrix 
exponential, cannot be applied to matrix Mittag‑Leffler functions, as the latter do not possess the semigroup property. Here we describe 
a method of computing the matrix Mittag‑Leffler function based on the Jordan canonical form representation. This method is implemented 
with Matlab code [1].
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2. Fractional differential equations  
and matrix Mittag‑Leffler functions

The matrix Mittag‑Leffler function was probably first intro‑
duced in paper [9], where it was used in an explicit solution of 
a linear system of fractional order equation (FDEs)

 Dαz = Az + f ,  0 < α ∙ 1. (1)

Here Dαz stands for the Riemann–Liouville fractional 
derivative of order α [10]. In general, if g is a function hav‑
ing absolutely continuous derivatives up to the order m ¡ 1, 
the Riemann–Liouville derivative of fractional order α, 
m ¡ 1 < α ∙ m, can be defined as follows:

 Dαg(t) =  1
Γ(m ¡ α)

dm

dtm

Z

0

t g(τ)
(t ¡ τ)α ¡ m + 1 dτ . (2)

Hereafter A is a fixed real n£n matrix, and z,  f : [0, 1) ! 
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1. Introduction

The theory of fractional differential equations is a new and im-
portant branch of differential equation theory, which has nu-
merous applications and provides realistic models for many
real-life processes and phenomena; see [2, 3, 4, 5]. The Mittag-
Leffler function Eα,β (z) plays the same role in fractional dif-
ferential equations that the exponential function ez plays in or-
dinary differential equations.

A natural extension of the exponential function to the case
of matrix arguments proved to be extremely useful in study-
ing the linear systems of ordinary differential equations aris-
ing in engineering, mechanics, control theory etc. Similarly
the matrix Mittag-Leffler function is crucial in linear systems
of fractional differential equations, allowing to represent ex-
plicitly their solutions. That is why the methods for computing
the matrix Mittag-Leffler function are so important.

There exists a wide range of methods for computing of the
matrix exponential and many of them can be adapted for com-
putation of the matrix Mittag-Leffler function. One of the
methods is based on Jordan canonical form [6, 7]. Here we
apply this approach and propose a technique for computation
the matrix Mittag-Leffler function, which is implemented with
MATLAB code [1].

The numerical methods based on Jordan canonical form
have major disadvantage, since the involved similarity trans-
formation can be ill-conditioned. However the numerical ex-
periments on the benchmark example of the Bagley–Torvik
equation [8] imply that the proposed approach allows to ob-
tain satisfactory accuracy.
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2. Fractional Differential Equations and Matrix
Mittag-Leffler Functions

The matrix Mittag-Leffler function was probably first intro-
duced in the paper [9], where it was used in an explicit solution
of a linear system of fractional order equation (FDEs)

Dα z = Az+ f , 0 < α ≤ 1. (1)

Here Dα z stands for the Riemann–Liouville fractional
derivative of order α [10]. In general, if g is a function hav-
ing absolutely continuous derivatives up to the order m−1, the
Riemann–Liouville derivative of fractional order α , m− 1 <
α ≤ m, can be defined as follows:

Dα g(t) =
1

Γ(m−α)

dm

dtm

∫ t

0

g(τ)
(t − τ)α−m+1 dτ. (2)

Hereafter A is a fixed real n×n matrix, and z, f : [0,∞)→Rn

are measurable vector-functions taking values in Rn.
If (1) is supplied with initial condition of the form

1
Γ(1−α)

∫ t

0

z(τ)
(t − τ)α dτ

∣∣∣
t=0

= z0, (3)

then solution to the initial value problem (1), (3) can be written
down in the form

z(t)= tα−1Eα,α(Atα)z0+
∫ t

0
(t−τ)α−1Eα,α(A(t−τ)α) f (τ)dτ,

(4)
where

Eα,β (A) =
∞

∑
k=0

Ak

Γ(αk+β )
, α > 0, β ∈ C, (5)

denotes the matrix Mittag-Leffler function of A.
The expression (4) can be rewritten in more compact form

z(t) = eAt
α z0 +

∫ t

0
eA(t−τ)

α f (τ)dτ, (6)

where eAt
α = tα−1Eα,α(Atα) is the matrix α-exponential func-

tion introduced in the monograph [11].

1

n 
are measurable vector‑functions taking values in 
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∫ t

0
eA(t−τ)

α f (τ)dτ, (6)

where eAt
α = tα−1Eα,α(Atα) is the matrix α-exponential func-

tion introduced in the monograph [11].

1

n.
If (1) is supplied with initial condition of the form

 1
Γ(1 ¡ α)

Z

0

t z(τ)
(t ¡ τ)α

dτ j
t = 0

 = z0 , (3)

then solution to the initial value problem (1), (3) can be written 
down in the form

 
z(t) = tα ¡ 1Eα,α(Atα)z0  +

z(t) + 
Z

0

t
(t ¡ τ)α ¡ 1Eα,α(A(t ¡ τ)α) f (τ)dτ ,

 (4)

where

1. Introduction

The theory of fractional differential equations is a new and 
important branch of differential equation theory, which has 
numerous applications and provides realistic models for many 
real‑life processes and phenomena; see [2–5]. The Mittag‑Lef‑
fler function Eα, β(z) plays the same role in fractional differen‑
tial equations that the exponential function ez plays in ordinary 
differential equations.

A natural extension of the exponential function to the case 
of matrix arguments proved to be extremely useful in studying 
the linear systems of ordinary differential equations arising in 
engineering, mechanics, control theory etc. Similarly, matrix 
Mittag‑Leffler function is crucial in linear systems of fractional 
differential equations, allowing to represent explicitly their 
solutions. That is why the methods for computing the matrix 
Mittag‑Leffler function are so important.

There is a wide range of methods for computing of the ma‑
trix exponential and many of them can be adapted for computa‑
tion of the matrix Mittag‑Leffler function. One of the methods 
is based on Jordan canonical form [6, 7]. Here we apply this 
approach and propose a technique for computation the matrix 
Mittag‑Leffler function, which is implemented with Matlab 
code [1].

The numerical methods based on Jordan canonical form 
have a major disadvantage, since the involved similarity trans‑
formation can be ill‑conditioned. However, the numerical ex‑
periments on the benchmark example of the Bagley–Torvik 
equation [8] imply that the proposed approach allows to obtain 
satisfactory accuracy.
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 Eα, β (A) = 
1

k=0
∑ Ak

Γ(αk + β)
,  α > 0,  β  2 ℂ, (5)

denotes the matrix Mittag‑Leffler function of A.
The expression (4) can be rewritten in a more compact form

 z(t) = eαAtz0 + 
Z

0

t
eαA(t ¡ τ) f (τ)dτ , (6)

where eαAt = tα ¡ 1Eα,α(Atα) is the matrix α‑exponential function 
introduced in the monograph [11].

Since FDEs involving the Riemann–Liouville fractional de‑
rivative require initial conditions of the form (3) lacking clear 
physical interpretation, the regularized fractional derivative was 
introduced. The latter is often referred to as the Caputo deriv‑
ative and defined as follows:

 
D(α)g(t) =  1

Γ(m ¡ α)

Z

0

t g(m)(τ)
(t ¡ τ)α ¡ m + 1 dτ ,

m ¡ 1 > α ∙ m.
 (7)

Initial value problem for FDEs involving the Caputo deriv‑
ative

 D(α)z = Az + f ,  0 < α ∙ 1, (8)

requires standard initial conditions

 z(0) = z0, (9)

and its solution can be explicitly written down in terms of ma‑
trix Mittag-Leffler functions as follows [12, 13]:

 
z(t) = Eα,1(Atα)z0  +

z(t) + 
Z

0

t
(t ¡ τ)α ¡ 1Eα,α(A(t ¡ τ)α) f (τ)dτ .

 (10)

As an example let us consider the well‑known Bagley–Tor‑
vik equation [8] describing vibrations of a rigid plate immersed 
in Newtonian liquid:

 ay00(t) + bD(3/2)y(t) + cy(t) = f (t), (11)

 y(0) = y0,  y0(0) = y00 . (12)

Its analytical solution obtained with the help of fractional 
Green՚s function in terms of scalar generalized Mittag-Leffler 
functions is cumbersome and involves evaluation of a convo‑
lution integral, containing a Green՚s function expressed as an 
infinite sum of derivatives of Mittag‑Leffler functions, and 

for general functions f  this cannot be evaluated conveniently. 
Namely [14]

y(t) = 
Z

0

t
G3(t ¡ τ) f (τ)dτ ,

where the Green function G3 is of the form

G3(t) = 1
a

1

k=0
∑ (–1)k

k!

³c
a

ḱ
t2k + 1E(k)

1
2 , 2 + 3k

2

³
– b

a
t
´

.

On the other hand, the equation of Bagley–Torvik is equiv‑
alent to the following system [15]

 D(1/2)z = Bz + Cf , (13)

where B = 



 0 1 0 0
 0 0 1 0
 0 0 0 1
 – c/a 0 0 – b/a 



, C = (0, 0, 0, 1/a)T, 

z = (y, D(1/2)y, y0, D(3/2)y)T under the initial conditions

z(0) = z0 = (y0, 0, y00, 0)T.

Its solution in terms of matrix Mittag‑Leffler functions is given 
by the following expression:

 z(t) = E 1
2 , 1(B t )z0 + 

Z

0

t
E 1

2 , 12
(B t ¡ τ )C f (τ)dτ

t ¡ τ
, (14)

which can be easily evaluated.
The explicit expressions (4, 6), and (10) play a key role in 

numerous applications related to systems with fractional dy‑
namics (5, 16, 17). That is why the methods for computing the 
matrix Mittag‑Leffler function are so important.

Both the matrix Mittag‑Leffler function and the matrix 
α‑exponential functions are generalizations of matrix expo‑
nential function, since

E1, 1(At) = e1
At = eAt.

This implies that some of numerous existing methods for com‑
puting the matrix exponential can be adapted for the matrix Mit‑
tag‑Leffler functions as well. An overview and analysis of these 
methods can be found in the paper [7] and in the monograph [6]. 
Unfortunately, the technique of scaling and squaring, widely 
used in computing of the matrix exponential, cannot be applied 
for the matrix Mittag‑Leffler and α‑exponential functions, as 
the latter do not possess the semigroup property.

Here we describe a method of computing the matrix Mit‑
tag‑Leffler function based on the Jordan canonical form repre‑
sentation. This method is implemented with Matlab code [1].

3. Matrix functions

There is a number of equivalent definitions of a matrix func‑
tion. The following classic definition in terms of interpolation 
polynomials is applied according to [18]. Let
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ψ(λ) = (λ ¡ λ1)
m1(λ ¡ λ1)

m2 … (λ ¡ λs)
ms

be the minimal polynomial of A, where λ1, λ2, …, λs are all 
the distinct eigenvalues of A. The degree of this polynomial is 
m = ∑s

k =1mk.
Let us consider a sufficiently smooth function f (λ) of scalar 

argument and call the m numbers

 f (λk),  f 0(λk), …,  f (mk ¡ 1)(λk)   (k = 1, …, s) (15)

the values of the function f  on the spectrum of the matrix 
A and the set of all these values will be denoted symbolically 
by f (ΛA). If for some function f  the values (15) exist, then we 
will say that the function f  is defined on the spectrum of the 
matrix A.

Definition 1. (matrix function via interpolation polynomial 
[18]). Let f (λ) be a function defined on the spectrum of a ma‑
trix A and r(λ) the corresponding interpolation polynomial such 
that f (ΛA) = r(ΛA). Then

f (A) = r(A).

Let us recall the following.

Theorem 1. Any constant n£n matrix A is similar to a matrix 
J in Jordan canonical form. That is, there exists an invertible 
matrix P such that the n£n matrix J = Z –1AZ is in the canon‑
ical form

 J = diag{J1, J2, …,  Js} (16)

where each Jordan block matrix Jk, k = 1, … , s, is a square 
matrix of the form

Jk = 





 λk 1 0 … 0

 0 λk 1 … 0

 0 0 λk … 0

 ⁝ ⁝ ⁝ . . . ⁝

 0 0 0 … 1

 0 0 0 … λk




 .

It is shown (see e.g. [18]) that Definition 1 is equivalent to 
the following definition based on the Jordan canonical form. 
We will use the latter for computing the matrix Mittag‑Leffler 
function.

Definition 2. (matrix function via Jordan canonical form). 
Let the function f  be defined on the spectrum of A and let 
A = ZJZ –1, where J is the Jordan canonical form (16). Then

 
f (A) = Z f (J )Z –1 = 

= Z diag{ f (J1),  f (J2), …,  f (Js)}Z –1,
 (17)

where

 f (Jk) = 






 f (λk) f 0(λk) 

f 00(λk)

2
 … 

f (mk ¡ 1)(λk)

(mk ¡ 1)!

 0 f (λk) f 0(λk) … 
f (mk ¡ 2)(λk)

(mk ¡ 2)!

 0 0 f (λk) … 
f (mk ¡ 3)(λk)

(mk ¡ 3)!

 ⁝ ⁝ ⁝ . . . ⁝

 0 0 0 … f 0(λk)

 0 0 0 … f (λk)







.  (18)

3.1. Generalized Mittag‑Leffler functions. The generalized 
(scalar) Mittag‑Leffler function also known as Prabhakar func‑
tion is defined for complex z, α, β, ρ 2 ℂ, and ℜ(α) > 0 by

 Eρ
α,β (z) = 

1

k=0
∑ (ρ)k

Γ(αk + β)

zk

k!
, (19)

where (ρ)k = ρ(ρ + 1) … (ρ + k ¡ 1) is the Pochhammer sym‑
bol.

In particular, when ρ = 1, it coincides with the Mittag-Lef‑
fler function (5):

E1
α,β (z) = Eα,β (z).

Since the expression (18) involves derivatives, the following 
equation [11] is important for the purpose of computing the 
matrix Mittag‑Leffler function:

 
µ

d
dt

¶m 
Eα, β (t) = m!E m + 1

α, β + αm(t),    m 2 ℕ. (20)

In view of (20), the formulas (17, 18) take on the form

 
Eα, β (A) =
= Z diag{Eα, β (J1),  Eα, β (J2), …,  Eα, β (Js)}Z –1,

 (21)

f (Jk) = 

= 






 Eα,β(λk) E2

α,β + α(λk) … E mk
α, β + (mk ¡ 1)α(λk)

 0 Eα,β(λk) … E mk ¡ 1
α, β + (mk ¡ 2)α(λk)

 0 0 … E mk ¡ 2
α, β + (mk ¡ 3)α(λk)

 ⁝ ⁝ . . . ⁝

 0 0 … E2
α,β + α(λk)

 0 0 … Eα,β(λk)







.
 (22)
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4. Software implementation

The formulas (21, 22) can be used for computing the matrix 
Mittag‑Leffler function and were implemented in the form of 
Matlab routine mlfm.m [1]. For computing generalized Mit‑
tag‑Leffler functions of the form Em

α, β + (m ¡ 1)α(λk), the Matlab 
routine by R. Garrappa is used, which implements the optimal 
parabolic contour (OPC) algorithm described in [19] and based 
on the inversion of the Laplace transform on a parabolic con‑

tour suitably chosen in one of the regions of analyticity of the 
Laplace transform.

To verify the accuracy of the mlfm.m routine, one can con‑
sider the Bagley–Torvik equation (11, 12).

Figure 1 shows analytical solution to (11, 12) obtained 
by direct evaluation of the expression (14) using the mlfm.m 
routine. For comparison, Fig. 2 represents numerical solution 
derived using discretization on the basis of triangular strip ma‑
trices [20].

Fig. 1. Analytical solution using the mlfm.m routine

Fig. 2. Numerical solution
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If c = 0, the matrix Mittag-Leffler functions appearing in 
(14) can be found analytically.

Indeed, if c = 0 the matrix B in (13) takes on the form

 B = 



  0 1 0 0
 0 0 1 0
 0 0 0 1
 0 0 0 p 



, (23)

where p = – b/a.
Hence,

B2 = 





 0 0 1 0
 0 0 0 1
 0 0 0 p
 0 0 0 p2




 , Bk = 





 0 0 0 pk ¡ 3

 0 0 0 pk ¡ 2

 0 0 0 pk ¡ 1

 0 0 0 pk




 , k = 3, 4, …

Therefore,

E 1
2 ,1(B) = 

1

k=0
∑ Bk

Γ(k/2 + 1)
 = 

= 





 1 1

Γ(3/2)
 1 p–3E 1

2,1(p) ¡ p–3 ¡  1
p2Γ(3/2)

 ¡  1
p

 0 0 1
Γ(3/2)

 p–2E 1
2 ,1(p) ¡ p–2 ¡  1

pΓ(3/2)

 0 0 1 p–1E 1
2 ,1(p) ¡ p–1

 0 0 0 E 1
2 ,1(p)




 ,

E 1
2 , 1

2
(B) = 

1

k=0
∑ Bk

Γ((k + 1)/2)
 = 

= 





 1
Γ(1/2)

 1 1
Γ(3/2)

 p–3E 1
2 , 1

2
(p) ¡ 

3

i=1
∑   1

piΓ(4 ¡ i
2 )

 0 1
Γ(1/2)

 1 p–2E 1
2 , 1

2
(p) ¡  1

p2Γ(1/2)
 ¡ 1

p

 0 0 1
Γ(1/2)

 p–1E 1
2 , 1

2
(p) ¡  1

pΓ(1/2)

 0 0 0 E 1
2 , 1

2
(p)




 .

And taking into account the following properties of gam‑
ma‑function and scalar Mittag‑Leffler function

Γ
µ

1
2

¶
 =  π , Γ

µ
3
2

¶
 = 1

2
Γ
µ

1
2

¶
 =  π

2
,

E 1
2 ,1(z) = ez2

erfc(–z),

E 1
2 , 1

2
(z) = zE 1

2 ,1(z) +  1
Γ(1/2)

 = zez2
erfc(–z) +  1

π
,

we arrive at the following explicit expressions

E 1
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 e p2
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1
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 0 0 0 e p2
erfc(– p)
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 (24)

E 1
2 , 1

2
(B) = 
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π

 1 2
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 e p2

p2 erfc(– p) ¡  1
p2 ¡  2

p π

 0 1
π

 1 e p2

p
erfc(– p) ¡  1

p

 0 0 1
π

 e p2
erfc(– p)

 0 0 0 pe p2
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π




 . (25)

Here erfc stands for the complementary error function, an 
entire function defined by

erfc(z) =  2
π

Z

z

1

e– t2
dτ .

Applying the mlfm.m routine to the matrix (23) and then 
comparing the result to the reference matrices (24, 25) implies 
that the proposed approach ensures absolute error which does 
not exceed 10–15 for this particular case.
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