PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement and analysis of pocket milling features in abrasive water jet machining of Ti-6Al-4V alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work deals with the size effect of abrasive water jet milling parameters on the square pockets of Ti-6Al-4V alloy. In this study, the abrasive mesh size, water jet pressure and traverse rate were chosen as milling variables and their effect on pocket features such as depth of cut, undercut, material removal rate, and surface roughness were examined. This study also characterizes the milled pocket surfaces under different milling conditions. Most of the measurements and surface characterizations were done using the Dino-Lite Digital Microscope. For both #80 and #100 abrasives, the AWJ-milled pockets were formed with variations in depth milled and rugged surface by increasing the water jet pressure from 175 to 200 MPa under all the selected traverse rate conditions. Also, the variations of depth of cut in successive trajectories found to have a speed bump effect. At these settings, distribution of energy to the work material was more due to deceleration of jet in the boundary close by and changes made in the feed directions in raster path from 0° to 90° at a step-over distance of 0.2 mm. This yielded undercuts in the milled pocket corners. However, there was a significant reduction in the undercut with a water jet pressure of 125 MPa and a traverse rate of 3500 mm/min were employed. Besides, the abrasive mesh size #100 had a better surface topography, and also strong jet footprints were observed with mesh size of #80. Based on the experiments results, the size effect of different milling parameters was seen having influence on the pocket geometry and surface features.
Rocznik
Strony
art. no. e42, 2023
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
  • CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
  • Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, India
  • PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
Bibliografia
  • 1. Yuan Y, Chen J, Gao H, Wang X. An investigation into the abrasive waterjet milling circular pocket on titanium alloy. Int J Adv Manuf Techno. 2020;107(11):4503-15. https://doi.org/10.1007/s00170-020-05294-x.
  • 2. Natarajan Y, Murugesan PK, Mohan M, Khan SALA. Abrasive water jet machining process: a state of art of review. J Manuf Process. 2020;49:271-322. https://doi.org/10.1016/j.jmapro.2019.11.030.
  • 3. Fowler G, Shipway PH, Pashby IR. Abrasive water-jet controlled depth milling of Ti6Al4V alloy-an investigation of the role of jet-workpiece traverse speed and abrasive grit size on the characteristics of the milled material. J Mater Process Technol. 2005;161:407-14. https://doi.org/10.1016/j.jmatprotec.2004.07.069.
  • 4. Pal VK, Choudhry SK. Surface characterization and machining blind pockets on Ti6Al4V by abrasive water jet machining. Procedia Mat Sci. 2014;5:1584-92. https://doi.org/10.1016/j.mspro.2014.07.346.
  • 5. Gupta TVK, Ramkumar J, Tandon P, Vyas NS. Role of process parameters on pocket milling with abrasive water jet machining technique. Int J Mech Mechatron Eng. 2013;7:10. https://doi.org/10.5281/zenodo.1088452.
  • 6. Pal VK, Tandon P. A method to reduce milling time for Ti-6Al-4V alloy for controlled depth milling using abrasive water jet machining. Adv Mater Res. 2012;383:1764-8. https://doi.org/10.4028/www.scientific.net/AMR.383-390.1764.
  • 7. Pal VK, Tandon P. Identification of the role of machinability and milling depth on machining time in controlled depth milling using abrasive water jet. Int J Manuf Technol Manage. 2013;66:877-81. https://doi.org/10.1007/s00170-012-4373-z.
  • 8. Fowler G, Pashby IR, Shipway PH. The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear. 2009;266:613-20. https://doi.org/10.1016/j.wear.2008.06.013.
  • 9. Shipway PH, Fowler G, Pashby IR. Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear. 2005;258:123-32. https://doi.org/10.1016/j.wear.2004.04.005.
  • 10. Mogul YI, Nasir I, Myler P. Investigation and optimization for depth of cut and surface roughness for control depth milling in Titanium Ti6AL4V with abrasive water jet cutting. Mater Today: Proc. 2020;28:604-10. https://doi.org/10.1016/j.matpr.2019.12.229.
  • 11. Kanthababu M, Ram R, Emannuel N, Gokul R, Rammohan R. Experimental investigations on pocket milling of titanium alloy using abrasive water jet machining. FME Trans. 2016;44:133-8. https://doi.org/10.5937/fmet1602133K.
  • 12. Gopichand G, Sreenivasrao M. Multi-response parametric optimisation of abrasive waterjet milling of Hastelloy C-276. SN Appl Sci. 2020;11:1-17. https://doi.org/10.1007/s42452-020-03512-5.
  • 13. Paul S, Hoogstrate AM, Van Luttervelt CA, Kals HJJ. An experimental investigation of rectangular pocket milling with abrasive water jet. J Mater Process Technol. 1998;73:179-88. https://doi.org/10.1016/S0924-0136(97)00227-6.
  • 14. Goutham U, Hasu BS, Chakraverti G, Kanthababu M. Experimental investigation of pocket milling on inconel 825 using abrasive water jet machining. Int J Curr Eng Technol. 2016;6(1):295-302.
  • 15. Kong MC, Axinte D, Voice W. Challenges in using waterjet machining of NiTi shape memory alloys: an analysis of controlled-depth milling. J Mater Process Technol. 2011;211:959-71. https://doi.org/10.1016/j.jmatprotec.2010.12.015.
  • 16. Yuvaraj N, Pavithra E, Shamili CS. Investigation of surface morphology and topography features on abrasive water jet milled surface pattern of SS 304. J Test Eval. 2020;48:2981-97. https://doi.org/10.1520/JTE20180856.
  • 17 Alberdi A, Rivero L, de Lacalle LNL, Experimental study of the slot overlapping and tool path variation effect in abrasive waterjet milling. J Manuf Sci Eng 2011; 133 034502-1-034502-4. https://doi.org/10.1115/1.4004320.
  • 18. Hashish M. AWJ milling of gamma titanium aluminide. J Manuf Sci Eng 2010; 132.4. https://doi.org/10.1115/1.4001663.
  • 19. Escobar-Palafox GA, Gault RS, Ridgway K. Characterisation of abrasive water-jet process for pocket milling in Inconel 718. Procedia CIRP. 2012;1:404-8. https://doi.org/10.1016/j.procir.2012.04.072.
  • 20 Adsul S, Srinivasu DS. Experimental investigations on the surface characteristics of abrasive waterjet-milled pockets in aluminium 6061-T6 alloy. Adv Mater Process Technol. 2020. https://doi.org/10.1080/2374068X.2020.1815136.
  • 21. Bui VH, Gilles P, Sultan T, Cohen G, Rubio W. Adaptive speed control for waterjet milling in pocket corners. Int J Adv Manuf Technol. 2019;103:77-89. https://doi.org/10.1007/s00170-019-03546-z.
  • 22. Akshay H, Rédouane Z, Roux SL, Crouzeix L. Impact of the abrasive water jet milling process on the damage and surface characteristics of CFRP composite, 17th European Conference on Composite Materials, Munich, Germany (2016).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd9681bf-33ce-48d6-aeae-f3345551f488
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.