PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing fireball diameter and duration of 227 gram cartridges containing isobutane

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work was to verify equations describing the diameter and duration of the fireball in relation to small tanks containing LPG. As a result of testing small, three-piece bayonet-type cartridges containing 227 g of isobutane, it was observed that the fireball parameters may vary significantly depending on the discharge direction of the medium. After the bottom gas discharge (BD) the fireball was found to have a significantly larger observed diameter than during the top discharge (TD), amounting on average to 4.58 and 3.63 m, respectively. An analysis of the maximum fireball diameter (rF), the total fireball duration (tF) and the time to reach the maximum fireball value (tMR) has shown that in the case of TD there is significantly greater convergence with relationships presented in the literature than is the case with BD. Comparing the static fireball models, it can be noticed that for the TD tests the rF values the closest to experiment are obtained in the case of the Williamson&Mann, Hasegawa Sato (1977), Lithiou&Maud (butane) and CCPS equations. In the case of BD tests, convergence with models is much lower, with the smallest error observed for the relationship presented by TNO (12.5%). The tMR and tF values calculated for the dynamic models of Martinsen & Marx and Pritchard are much shorter than those obtained in the experiment, and greater deviations may be noticed in the case of BD, especially in relation to the Pritchard model. The research showed that the fireball growth rate for the tested cartridges is much lower than predicted in the analysed models.
Rocznik
Strony
137--150
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
  • District Headquarters State Fire Service Tomaszów Mazowiecki, Poland
  • Fire University, Warsaw, Poland
Bibliografia
  • 1. Abbasi, T., Abbasi, S.A., (2007). The boiling liquid expanding vapour explosion (BLEVE): Mechanism, consequence assessment, management. J. Hazardous Materials, 141, 489–519.
  • 2. Betteridge, S., Phillips, L., (2015). Large scale pressurised LNG BLEVE experiments. Inst. Chem. Eng. Symp., 353–364, 2015.
  • 3. CCPS, (1999). Guidelines for Consequence Analysis of Chemical Releases. New York: Center for Chemical Process Safety, American Institute of Chemical Engineers.
  • 4. Davison, N., Edwards, M.R., (2008). Effects of fire on small commercial gas cylinders. Eng. Failure Anal., 15, 1000–1008.
  • 5. DNV, (2023). Theory review & validation. BLEVE (Fireball), Decembec.
  • 6. Duiser, J.A., (1984). Escape of liquefied gases from broken pipes. In: The Protection of Exothermic reactors and Pressurised Storage Vessels. Rugby: Institution of Chemical Engineers.
  • 7. Fay, J.A., Lewis, D.H., (1977). Unsteady burning of unconfined fuel vapour clouds. Combustion, 16, 1397–1403.
  • 8. Gayle, J.B., Bransford, J.W., (1965). Size and duration of fireballs from propellant explosions. Report NASA TM X-53314. Huntsville, USA: George C. Marshall Space Flight Center.
  • 9. Hardee, H.C., Lee, D.O., (1973). Thermal hazard from propane fireballs. Transport Plan. Technol., 2, 121–133.
  • 10. Hasegawa, K., Sato, K., (1977). Study on the Fireball Following Steam Explosion of n-Pentane. Loss Prev. Saf. Prom., 2, 297–303.
  • 11. Hasegawa, K., Sato, K., (1977). Fireballs, 12. Technical Memos of Fire Research Institute of Japan, 3–9.
  • 12. Johnson, D.M., Pritchard, M.J., (1991). Large scale experimental study of boiling liquid expanding vapour explosions (BLEVEs). British Gas plc, Research and Technology Division.
  • 13. Lihou, D.A., Maund, J.K., (1982). Thermal Radiation hazards from fireballs. In: The Assessment of Mayor Hazards. Rugby: Institution of Chemical Engineers.
  • 14. Marshall, V.C., (1987). Major Chemical Hazards. Chichester: Elis Horwood.
  • 15. Martinsen, W.E., Marx, J.D., (1999). An improved model for the prediction of radiant heat from fireballs. In: International Conference and Workshop on Modeling Consequences of Accidental Releases of Hazardous Materials. San Francisco, California September.
  • 16. Moorhouse, J., Pritchard, M.J., (1982). Thermal Radiation hazards from large pool fires and fireballs a literature review. In: The Assessment of Mayor Hazards. Rugby: Institution of Chemical Engineers.
  • 17. Pietersen, C.M., (1985). Analysis of the LPG Accident in San Juan Ixhuatepec, Mexico City. Report 85-0222, November 19, 1984, TNO, The Hague.
  • 18. Roberts, A.F., (1982). Thermal radiation Hazard from releases of LPG from pressurized storage. Fire Saf. J., 4, 197–212.
  • 19. Van den Bosch, C.J.H, Weterings, R.A.P.M., (1997). Metods for the Calculation of Physical Effects, Committee for the Prevention of Disasters, CPR 14E (TNO “Yellow Book”), The Hague.
  • 20. Williamson, B.R., Mann, L.R.B., (1981). Thermal hazards from propane LPG fireballs. Combus. Sci. Technol., 25, 141–153.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd95e1f4-67d8-4a56-be5f-cfe107ee4214
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.