PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Simulations of the Effects of Droplet Size and Concentration on Vapour-Droplet JP-10/Air Detonations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two-dimensional simulations were conducted for JP-10 mono-dispersed vapour-droplet detonation in air, based on the detonation mechanism for clouds and validation of the extending critical droplet size limits in previous tests. In the simulations, the discrete phase model combined with the droplet evaporation and droplet breakup models was used. Utilizing a wide range of mono-dispersed droplet sizes and initial droplet concentrations, all cases of JP-10 droplets with a certain amount of pre-vaporized fuel can successfully achieve the deflagration to detonation transition. Detonation velocities at the equivalent concentration with droplet diameters no larger than 50 μm are in good agreement with the theoretical detonation velocities. The effects of droplet size and initial droplet concentration on the detonation behaviour were also investigated. Detonation velocities attained with droplet diameters below 50 μm appear to decrease very slightly with droplet size, but are almost equal to the velocity in gases. When the droplet diameter is above 50 μm, there is a decrease in simulated detonation velocity compared with fine droplets, and no secondary pressure peak was observed. For fuel-rich combustion, detonation velocities decrease rapidly with an increase in initial droplet concentration, and post-wave pressure fluctuation was obviously irregular, caused by the secondary local explosion of the droplets.
Rocznik
Strony
175--190
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081 Beijing, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081 Beijing, China
Bibliografia
  • [1] Wintenberger, E.; Shepherd, J. E. Model for the Performance of Airbreathing Pulse-Detonation Engines. J. Propul. Power 2006, 22(3): 593-603.
  • [2] Knystautas, R.; Guirao, C.; Lee, J. H.; Sulmistras, A. Measurements of Cell Size in Hydrocarbon-Air Mixtures and Predictions of Critical Tube Diameter, Critical Initiation Energy, and Detonability Limits. In: Dynamics of Shock Waves, Explosions, and Detonations. (Soloukhin, R. I.; Oppenheim, A. K.; Manson, N.; Bowen, J. R., Eds.) 1984, pp. 23-37.
  • [3] Beeson, H. D.; McClenagan, R. D.; Bishop, C. V.; Benz, F. J. Detonability of Hydrocarbon Fuels in Air. In: Dynamics of Detonations and Explosions: Detonations. (Leyer, J.-C.; Borisov, A. A.; Kuhl, A. L.; Sirignano, W. A., Eds.) 1991, pp. 19-36; ISBN 978-0-930403-97-3.
  • [4] Debnath, P.; Pandey, K. M. Numerical Investigation of Detonation Combustion Wave in Pulse Detonation Combustor with Ejector. J. Appl. Fluid Mech. 2017, 10(2): 1-10.
  • [5] Debnath, P.; Pandey, K. M. Exergetic Efficiency Analysis of Hydrogen-Air Detonation in Pulse Detonation Combustor Using Computational Fluid Dynamics. Int. J. Spray Combust. Dyn. 2017, 9(1): 44-54.
  • [6] Benedick, W. B.; Tieszen, S. R.; Knysautas, R.; Lee, J. H. S. Detonation of Unconfined Large-Scale Fuel Spray-Air Clouds. In: Dynamics of Detonations and Explosions: Detonations. (Leyer, J.-C.; Borisov, A. A.; Kuhl, A. L.; Sirignano, W. A., Eds.) 1991, pp. 297-310; ISBN: 978-0-930403-97-3.
  • [7] Li, S. C.; Varatharajan, B.; Williams, F. A. Chemistry of JP-10 Ignition. AIAA J. 2001, 39(12): 2351-2356.
  • [8] Hutchins, T. E.; Metghalchi, M. Energy and Exergy Analyses of the Pulse Detonation Engine. J. Eng. Gas Turbines Power 2003, 125(4): 1075-1080.
  • [9] Dabora, E. K.; Raglan, K. W.; Nicholls, J. A. Drop-Size Effects in Spray Detonations. Symposium (Int.) on Combustion, Elsevier, 1969, 12(1): 19-26.
  • [10] Bowen, J. R.; Ragland, K. W.; Steffes, F. J.; Loflin, T. G. Heterogeneous Detonation Supported by Fuel Fogs or Films. Symposium (Int.) on Combustion 1971, 13(1): 1131-1139.
  • [11] Burcat, A.; Eidelman, S. Evolution of a Detonation Wave in a Cloud of Fuel Droplets, II- Influence of Fuel Droplets. AIAA J. 1980, 18(10): 1233-1236.
  • [12] Eidelman, S.; Burcat, A. The Mechanism of a Detonation Wave Enhancement in a Two-Phase Combustible Medium. Symposium (Int.) on Combustion 1981, 18(1): 1661-1670.
  • [13] Brophy, C. M.; Netzer, D. W.; Sinibaldi, J.; Johnson, R. High-Speed Deflagration and Detonation: Fundamentals and Control. In: International Colloquium on Control and Detonation Processes (Roy, G. D.; Frolov, S. M.; Netzer, D. W.; Borisov, A. A., Eds.), Moscow, Russia 2000, pp. 207-222; ISBN 5938150019.
  • [14] Cheatham, S.; Kailasanath, K. Numerical Simulations of Multiphase Detonation in a Shock Tube. 41st Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, NV 2003, 1315.
  • [15] Cheatham, S.; Kailasanath, K. Multiphase Detonations in Pulse Detonation Engines. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, NV 2004, 306.
  • [16] Cheatham, S.; Kailasanath, K. Single-Cycle Performance of Idealized Liquid-Fueled Pulse Detonation Engines. AIAA J. 2005, 43(6): 1276-1283.
  • [17] Tangirala, V. E.; Dean, A. J. Investigations of Two-Phase Detonations for Performance Estimations of a Pulse Detonation Engine. 45th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, NV 2007, 1173.
  • [18] Wen, C. S.; Chung, K. M.; Lu, F. K.; Lai, W. H. Assessment of Flash-Boiling for Pulse Detonation Engines. Int. J. Heat Mass Transfer 2012, 55(11): 2751-2760.
  • [19] Xu, J.; Qiao, L.; Gao, J.; Chen, J. Droplet Breakup of Micro- and Nano-Dispersed Carbon-in-Water Colloidal Suspensions Under Intense Radiation. Int. J. Heat Mass Transfer 2014, 78: 267-276.
  • [20] Smirnov, N. N. Combustion and Detonation in Multiphase Media Containing a Liquid Fuel. Combust., Explos. Shock Waves 1998, 24(3): 340-349.
  • [21] Liu, L.; Zhang, Q.; Shen, S.; Li, D.; Lian, Z.; Wang, Y. Evaluation of Detonation Characteristics of Aluminum/JP-10/Air Mixtures at Stoichiometric Concentrations. Fuel 2016, 169: 41-49.
  • [22] Roux, S.; Cazalens, M.; Poinsot, T. Outlet-Boundary-Condition Influence for Large Eddy Simulation of Combustion Instabilities in Gas Turbines. J. Propul. Power 2008, 24(3): 541-546.
  • [23] Yin, D.; Chen, T.; Cong, P.; Yuan, S. Numerical Simulation of Combustion on JP-10 and RP-3. (in Chinese) Journal of Naval Aeronautical and Astronautical University 2008, 23(3): 1673-1522.
  • [24] Hudzik, J. M.; Asatryan, R.; Bozzelli, J. W. Thermochemical Properties of exo-Tricyclo[5.2.1.0(2,6)] decane (JP-10 jet fuel) and Derived Tricyclodecyl Radicals. J. Phys. Chem. A 2010, 114(35): 9545-9553.
  • [25] Harvey, B. G.; Wright, M. E.; Quintana, R. L. High-Density Renewable Fuels Based on the Selective Dimerization of Pinenes. Energy Fuels 2009, 24(1): 267-273.
  • [26] Handbook of Aviation Fuel Properties. Coordinating Research Council, Inc, DTIC selected copy, Atlanta, GA 1983, pp. 46-47.
  • [27] Chickos, J. S.; Hillesheim, D.; Nichols, G.; Zehe, M. J. The Enthalpies of Vaporization and Sublimation of exo-and endo-Tetrahydrodicyclopentadienes at T = 298.15 K. J. Chem. Thermodyn. 2002, 34(10): 1647-1658.
  • [28] Bruno, T. J.; Huber, M. L.; Laesecke, A.; Lemmon, E. W.; Perkins, R. A. Thermochemical and Thermophysical Properties of JP-10. Technical Report NISTIR No. 6640-325, 2005.
  • [29] Shepherd, J. E.; Austin, J.; Chao, T.; Pintgen, F.; Wintenberger, E.; Jackson, S.; et al. Detonation Initiation, Propagation, and Structural Response. In: Proc. 14th ONR Propulsion Meeting (Roy, G. D.; Mashayek F., Eds.), Chicago, IL 2001, pp. 148-153.
  • [30] Zhang, Q.; Liu, X. Explosion Parameters of Gaseous JP-10/Air Mixtures. Cent. Eur. J. Energ. Mater. 2016, 13(1): 261-270.
  • [31] Schauer, F.; Miser, C.; Tucker, C.; Bradley, R.; Hoke, J. Detonation Initiation of Hydrocarbon-Air Mixtures in a Pulsed Detonation Engine. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, NV 2005, 1343.
  • [32] Masuda, N.; Tangirala, V.; Benkiewicz, K.; Hayashi, A. K.; Tsuboi, N. Numerical Simulation of JP-10/Air Two-Phase Detonation. Int. J. Energ. Mater. Chem. Propul. 2008, 7(5): 421-436.
  • [33] Roy, G. D.; Frolov, S. M.; Borisov, A. A.; Netzer, D. W. Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective. Prog. Energy Combust. Sci. 2004, 30(6): 545-672.
  • [34] Sandhu, M.; Goel, A.; Sharma, R. K.; Soni, S. K.; Singh, A. Performance Comparison of Liquid Fuel Based Pulse Detonation System Using Different Liquid Fuel-Air Mixtures. National Propulsion Conference, Madras, India 2013, 1-8.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd953c47-b579-47db-be14-d87acc4e831f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.