PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of weld deformations by numerical methods - review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The welding process is the basic technique of joining in the shipbuilding industry. This method generates welding distortions that cause a lot of problems during the manufacturing process due to both the time and cost of straightening as well as their influence on later stages of production. Proper preparation of welding processes plays a growing role in the shipbuilding industry and the development of calculating tools is being observed. The paper presents a review and critical analysis of numerical methods for the assessment of welding distortion.
Rocznik
Tom
Strony
97--107
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
  • Gdańsk University of Technology Narutowicza 11/12, 80-233 Gdańsk Poland
Bibliografia
  • 1. L.M. Gourd, Principles of Welding Technology, The Welding Institute, London, 1995.
  • 2. R. Hetnarski, Ed., Encyclopedia of Thermal Stresses, Springer Link, 2014.
  • 3. N. Okerblom, Schweissspannungen in Metallkonstruktionen, Halle: Veb Carl Marhold Verlag, 1956.
  • 4. G. Verhaeghe, Predictive Formulae for Weld Distortion: A Critical Review, Abington Publishing, 1999, ISBN 185573 444 3., 1999.
  • 5. C. G. Soares and T. A. Santos, Eds., Maritime Technology and Engineering, vol. 1, Lisbon: CRC Press, 2014.
  • 6. M. Watanabe and K. Satoh, “Effect of welding conditions on the shrinkage and distortion in welded structures”, Welding Journal, 1961.
  • 7. V. Murugan and V. Gunaraj, “Effects of Process Parameters on Angular Distortion of Gas Metal Arc Welded Structural Steel Plates”, Welding Journal, 2005.
  • 8. R. W. O’Brien, “Predicting weld distortion in the design of automotive components”, Durham University, Durham, 2007.
  • 9. K. Sun, Y. Shi, Y. Hu and B. Liao, “Microstructure Evolution and Mechanical Properties of Underwater Dry Welded Metal of High Strength Steel Q690E under Different Water Depths”, Polish Maritime Research, vol. 27, no. 4, 2020.
  • 10. H. Li, S. Liu, Q. Ma, P. Wang, D Liu and Q. Zhu, “Investigation of Process Stability and Weld Quality of Underwater Wet Flux-Cored Arc Welding of Low-Alloy High-Strength Steel with Oxy-Rutile Wire”, Polish Maritime Research, vol. 28, no. 3, 2021.
  • 11. J. Kozak and J. Kowalski, “Problems of determination of welding angular distortions of T-fillet joints in ship hull structures”, Polish Maritime Research, vol. 22, no. 2(86), pp. 79-85, 2015.
  • 12. J. Kozak and J. Kowalski, “The Influence of Manufacturing Oversizing on Postwelding Distortions of the Fillet Welded Joint”, Polish Maritime Research, vol. 22, no. 4(88), pp. 59-63, 2015.
  • 13. M. Maternowski, Application of numerical methods for prediction of weld deformations of thin plates butt welded as well as laboratory verification of the results, Diploma thesis, Gdansk University of Technology, Faculty of Ocean Engineering and Ship Technology, (in Polish), 2021.
  • 14. J. Wang, H. Zhao, J. Zou, H. Zhou, Z. Wu and S. Du, “Welding distortion prediction with elastic FE analysis and mitigation practice in fabrication of cantilever beam component of jack-up drilling rig”, Ocean Engineering, 2017.
  • 15. T. Gray, Ed., Control of welding distortion in thin-plate fabrication, Cambridge, Woodhead Publishing Limited, 2014.
  • 16. A. Capriccioli and P. Frosi, “Multipurpose ANSYS FE procedure for welding processes simulation”, Fusion Engineering and Design, no. 84, 2009.
  • 17. S. Joshi, J. Hildebrand, A. S. Aloraier and T. Rabczuk, “Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on a substrate plate”, Computational Materials Science, no. 69, 2013.
  • 18. C. Heinze, C. Schwenk and M. Rethmeier, “Influences of mesh density and transformation behavior on the result quality of numerical calculation of welding induced distortion”, Simulation Modelling Practice and Theory, no. 19, 2011.
  • 19. D. Deng, Y. Zhou, T. Bi and X. Liu, “Experimental and numerical investigations of welding distortion induced by CO2 gas arc welding in thin-plate bead-on joints”, Materials and Design, no. 52, 2013.
  • 20. A. A. Bhatti, Z. Barsoum, H. Murakawa and I. Barsoum, “Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion,” Materials and Design, no. 65, 2015.
  • 21. D. Deng, “FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects”, Materials and Design, 2009.
  • 22. Z. Barsoum, A. A. Bhatti and S. Balawi, “Accuracy of computational welding mechanics methods for estimation of angular distortion and residual stresses”, in 1st International Conference on Structural Integrity, Kalpakkam, 2014.
  • 23. J. Zhu, M. Khurshid and Z. Barsoum, “Accuracy of computational welding mechanics methods for estimation of angular distortion and residual stresses”, Welding in the World, no. 63, 2019.
  • 24. S. C. Park, H. S. Bang and W. J. Seong, “Effects of Material Properties on Angular Distortion in Wire Arc Additive Manufacturing: Experimental and Computational Analyses”, Materials, 2020.
  • 25. K. Ferenc, Welding, Warszawa: Wydawnictwa Naukowo-Techniczne, 2007 (in Polish).
  • 26. J. A. Goldak and M. Akhlaghi, Computational Welding Mechanics, New York: Springer Science+Business Media, 2005.
  • 27. Y. Rong, G. Zhang and Y. Huang, “Study of Welding Distortion and Residual Stress Considering Nonlinear Yield Stress Curves and Multi-constraint Equations”, Journal of Materials Engineering and Performance, 2016.
  • 28. H. Long, D. Gery, A. Carlier and P. Maropoulos, “Prediction of welding distortion in butt joint of thin plates,” Materials and Design, 2009.
  • 29. P. Knoedel, S. Gkatzogiannis and T. Ummenhofer, “Practical aspects of welding residual stress simulation”, Journal of Constructional Steel Research, 2017.
  • 30. S. Silva, L. Vilarinho, A. Scotti, T. H. Ong and G. Guimaraes, “Heat flux determination in the gas tungsten-arc welding process by using a three-dimensional model in inverse heat conduction problem”, High Temperatures‒High Pressures, 2003/2004.
  • 31. C. Heinze, C. Schwenk and M. Rethmeier, “Effect of heat source configuration on the result quality of numerical calculation of welding-induced distortion”, Simulation Modelling Practice and Theory, 2012.
  • 32. S. Vrtiel and M. Behulova, “Analysis of laser beam welding of the S650MC high strength steel using numerical simulation,” in IOP Conference Series: Materials Science and Engineering, 2019.
  • 33. S. Akella, H. Vemanaboina and R. K. Buddu, “Heat Flux for Welding Processes: Model for Laser Weld”, Sreyas International Journal of Scientists and Technocrats, 2016.
  • 34. X. Zhan, G. Mi, Q. Zhang, Y. Wei and W. Ou, “The hourglass-like heat source model and its application for laser beam welding of 6 mm thickness 1060 steel”, International Journal of Advanced Manufacturing Technology, 2017.
  • 35. M. Chiumenti, M. Cervera, A. Salmi, C. A. Saracibar, N. Dialami and K. Matsui, “Finite element modeling of multi-pass welding and shaped metal deposition processes”, Computer Methods in Applied Mechanics and Engineering, 2010.
  • 36. M. Peric, Z. Tonkovic, A. Rodic, I. Garasic, I. Boras and S. Svaic, “Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld”, Materials and Design, 2014.
  • 37. Z. Barsoum and I. Barsoum, “Residual stress effects on fatigue life of welded structures using LEFM”, Engineering Failure Analysis, 2009.
  • 38. K. Seles, M. Peric and Z. Tonkovic, “Numerical simulation of a welding process using a prescribed temperature approach”, Journal of Constructional Steel Research, 2018.
  • 39. M. Peric, D. Stamenkovic and V. Milkovic, “Comparison of Residual Stresses in Butt-Welded Plates Using Software Packages Abaqus and ANSYS”, Scientific Technical Review, vol. 60, 2010.
  • 40. J. Klassen, T. Nitschke-Pagel and K. Dilger, “Simplified residual stress and distortion calculations of multi-pass welds and their possible influence on result quality”, Welding in the World, 2019.
  • 41. Y. Yang, F. Brust, Z. Cao, J. Kennedy, X. Chen, Z. Yang and N. Chen, “Lump-Pass Welding Simulation Technology Development for Shipbuilding Applications”, in 6th International Trends in Welding Research 2002, Pine Mountain, USA, 2003.
  • 42. P. Dong, J. Hong and P. Bouchard, “Analysis of residual stresses at weld repairs”, International Journal of Pressure Vessels and Piping, 2005.
  • 43. J. Guirao, E. Rodriguez, A. Bayon and L. Jones, “Use of a new methodology for prediction of weld distortion and residual stresses using FE simulation applied to ITER vacuum vessel manufacture”, Fusion Engineering and Design, 2009.
  • 44. [44] Z. Barsoum, A. Bhatti and S. Balawi, “Computational Weld Mechanics-Towards a simplified and cost effective approach for large welded structures”, in 1st International Conference on Structural Integrity, Funchal, 2015.
  • 45. H. Huang, N. Ma, T. Hashimoto and H. Murakawa, “Welding Deformation and Residual Stresses in Arc Welded Lap Joints by Modified Iterative Analysis”, Science and Technology of Welding & Joining, 2015.
  • 46. J. Wang, H. Yuan, N. Ma and H. Murakawa, “Recent research on welding distortion prediction in thin plate fabrication by means of elastic FE computation”, Marine Structures, 2016.
  • 47. Y. Rong, J. Xu, Y. Huang and G. Zhang, “Review on finite element analysis of welding deformation and residual stress”, Science and Technology of Welding and Joining, 2018.
  • 48. J. Wang, X. Shi, H. Zhou, Z. Yang and J. Liu, “Dimensional precision controlling on out-of-plane welding distortion of major structures in fabrication of ultra large container ship with 20000TEU”, Ocean Engineering, 2020.
  • 49. N. Ma, “An accelerated explicit method with GPU parallel computing for thermal stress and welding deformation of large structure models”, International Journal of Advanced Manufacturing Technology, 2016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd92ad58-e759-4ab5-ad09-c57685d35547
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.