Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a linear time self-stabilizing algorithm for detecting the set of fundamental cycles on an undirected connected graph modelling asynchronous distributed system.The previous known algorithm has O(n^2) time complexity, whereas we prove that this one stabilizesafter O(n) moves. The distributed adversarial scheduler is considered. Both algorithms assume that the depth-search spanning tree of the graph is given. The output is given in a distributed manner asa state of variables in the nodes.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
7--10
Opis fizyczny
Bibliogr. 7 poz., rys.
Twórcy
autor
- Institute of Mathematics, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 5, 20-031 Lublin, Poland
autor
- Institute of Computer Science, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 5, 20-031 Lublin, Poland
Bibliografia
- [1] Dijkstra E. W., Self-stabilizing in spite of distributed control, Communications of the ACM 17 (1974): 643.
- [2] Schneider M., Self-Stabilization, ACM Computing Surveys 25(1) (1993).
- [3] Dolev S., Self-stabilization, The MIT Press, 2000.
- [4] Harary F., Graph Theory, Addison-Wesley, 1972.
- [5] Chaudhuri P., A Self-Stabilizing Algorithm for Detecting Fundamental Cycles in a Graph, Journal of Computer and System Sciences 59 (1999): 84.
- [6] Collin Z., Dolev S., Self-stabilizing depth-first search, Information Processing Letters 49 (1994): 297.
- [7] Arora A., Gouda M. G., Closure and convergence: A foundation for fault-tolerant computing, Proceedings of the 22nd International Conference on Fault-Tolerant Computing Systems (1992).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd8869b7-77ff-4202-9b0a-efb4864696fa