PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and mechanical properties of austenitic steel after cold rolling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose The aim of the paper is to determine the influence of the cold plastic deformation within the range 18-79% and heat treatment in a temperature range of 500 to 700°C on the microstructure and mechanical properties of austenitic stainless steel grade X5CrNi18-8. Design/methodology/approach: The investigations included observations of the microstructure on a light microscope, researches of mechanical properties in a static tensile test and hardness measurements made by Vickers’s method. The analysis of the phase composition was carried out on the basis of X-ray researches. Whereas, X-ray quantitative phase analysis was carried out by the Averbach Cohen method. Finding Heat treatment of X5CrNi18-8 stainless steel in the range 500-700°C causes a significant decrease of the mechanical properties (Rm, Rp02) and increase of elongation (A). Hardness of investigated steel drops with decrease of cold working degree and increase of heat treatment temperature. Research limitations/implications The analysis of the obtained results permits to state that the heat treatment causes an essential changes of the microstructure connected with fading of cold deformation. Heating of cold rolled austenitic stainless steels can cause a reverse transformation a' → y Practical implications: Two-phase structure a’+y of austenitic Cr-Ni steel in deformed state working at elevated temperature undergo a transformation. It significantly influences mechanical properties of steel. Austenite phase undergoes a recrystallization, while martensite a’ phase undergoes reverse transformation. Originality/value: The analytic dependence of the yield point of the investigated steel on the cold working degree in cold rolling process has been confirmed. Revealing this relation is of essential practical importance for the technology of sheetmetal forming of austenitic steel.
Rocznik
Strony
148--153
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Division of Constructional and Special Materials Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Division of Constructional and Special Materials Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] U. Krupp, C. West, Deformation-inducted formation during cyclic deformation of metastable austenitic steel: Influence of temperature and carbon content, Materials Science and Engineering 20A (2008) 713-717.
  • [2] H. Abreu, S. Carvalho, P. Neto, R. Santos, Deformation induced martensite in an AISI 301LN stainless steels, Materials Research 10 (2007) 359-366.
  • [3] W. Ozgowicz, E. Kalinowska-Ozgowicz, A. Kurc, Influence of plastic deformation on structure and mechanical properties of stainless steel type X5CrNi18-10, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2008) 37-40.
  • [4] M. Blicharski, S. Gorczyca, Structural inhomogeneity of deformed austenitic stainless steel, Metal Science 12 (1978) 303-312.
  • [5] M. Milad, N. Zreiba, The effect of cold work on structure and properties of AISI 304 stainless steel, Journal of Materials Processing Technology 203 (2008) 80-85.
  • [6] A. Kurc, Z. Stokłosa, The effect of (y → a’) phase transformation on microstructure and properties of austenitic Cr-Ni steels; Archives of Materials Science and Engineering 41/2 (2010) 85-94.
  • [7] K. Mumtaz, S. Takahashi, J. Echigoya, Temperature dependence of martensite transformation in austenitic stainless steel, Journal of Materials Science Letters 22 (2003) 423-427.
  • [8] E. Kalinowska-Ozgowicz, A. Kurc, The influence of the martensite a’ phase occurring in the structure of cold rolled austenitic Cr-Ni steel on its mechanical properties, Archives of Materials Science and Engineering 37/1 (2009) 21-28.
  • [9] D. Jandova, J. Rehor, Z. Novy, Deformation processes in austenitic stainless steel, Proceedings of the 9th International Scientific Conference “Achievements in Mechanical and Materials Engineering” AMME’2000, Gliwice-Sopot, 2000, 254-258.
  • [10] M. Blicharski, Recrystallization of austenitic chromium-nickel steels, Metallurgist (1977) 129-143.
  • [11] T.S. Byun, N. Hashimoto, Temperature dependence of strain hardening and plastic instability behavior in austenitic stainless steels, Acta Materialia 52 (2004) 3889-3899.
  • [12] V. Toshkov, R. Russev, T. Madjarov, On low temperature ion nitriding of austenitic stainless steel AISI 316, Journal of Achievements in Materials and Manufacturing Engineering 25 (2007) 71-74.
  • [13] K. Pałka, A. Weroński, K. Zalewski, Mechanical properties and corrosion resistance of burnished X5CrNi18-9 stainless steel, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 57-62.
  • [14] Standard PN-EN 10088:2007, Steels resistance on corrosion (in Polish).
  • [15] Standard PN-EN 10002-1+AC1:2004, Metals. Tensile test, Method of investigation in the room temperature (in Polish).
  • [16] Standard PN-EN ISO 6507-1:2007, Metals. Hardness measurements made by Vickers’s method (in Polish).
  • [17] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, London, 1967.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd86dacc-6330-45ba-ba97-27e35efd9cfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.