PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hilbert curve fractal antenna for detection and on-line monitoring of partial discharges in power transformers

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Antena fraktalna Hilberta do detekcji i monitoringu wyładowań niezupełnych w transformatorach energetycznych
Języki publikacji
EN
Abstrakty
EN
This article describes the design of UHF Hilbert curve fractal antenna (HCFA) specially adapted for the partial discharge monitoring system. The authors present the mathematical apparatus for calculating resonant frequencies of Hilbert fractal antenna and results of a computer simulation of the developed prototype. In the design process, the antenna’s working environment (mineral oil) and the mechanical construction of the transformer inspection window were taken into consideration as well. The article also shows the results of laboratory tests carried out in the transformer tank model with different type of partial discharge sources. Both simulations and partial discharge measurements showed that the HCFA, due to such properties as: multi-resonance, small size, low fabrication cost and high sensitivity, is an interesting alternative to other UHF probes installed in transformer inspection window.
PL
W artykule zaprezentowano projekt anteny fraktalnej Hilberta przeznaczonej do stosowania w systemach monitoringu wyładowań niezupełnych wykorzystujących metodę UHF. Autorzy szczegółowo opisali aparat matematyczny służący do estymacji częstotliwości rezonansowych anteny fraktalnej Hilberta oraz wyniki symulacji komputerowych. Ponadto, w artykule zaprezentowano wyniki pomiarów laboratoryjnych, w trakcie których generowano impulsy wyładowań niezupełnych w modelu kadzi transformatora energetycznego. Zarówno wyniki symulacji komputerowych jak i pomiarów laboratoryjnych wykazały, że prototypowa antena fraktalna Hilberta, dzięki takim własnościom jak: wielorezonansowość, małe wymiary, niski koszt produkcji oraz wysoka czułość, stanowi ciekawą alternatywę dla innych czujników UHF instalowanych w oknie rewizyjnym transformatora energetycznego.
Rocznik
Strony
343--351
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Poznan University of Technology Institute of Electric Power Engineering Piotrowo 3A, 60-965 Poznań, Poland
autor
  • Poznan University of Technology Institute of Electric Power Engineering Piotrowo 3A, 60-965 Poznań, Poland
autor
  • Poznan University of Technology Institute of Electric Power Engineering Piotrowo 3A, 60-965 Poznań, Poland
autor
  • Poznan University of Technology Institute of Electric Power Engineering Piotrowo 3A, 60-965 Poznań, Poland
Bibliografia
  • 1. Álvarez F, Garnacho F, Ortego J, Sánchez-Urán M Á. Application of HFCT and UHF Sensors in On-Line Partial Discharge Measurements for Insulation Diagnosis of High Voltage Equipment. Sensors 2015; 15 (4): 7360-7387, https://doi.org/10.3390/s150407360.
  • 2. Baliarda C P, Romeu J, Cardama A. The Koch monopole: a small fractal antenna. IEEE Transactions on Antennas and Propagation 2000; 44 (48): 1773-1781., https://doi.org/10.1109/8.900236.
  • 3. CIGRE Technical Brochure 642, Transformer Reliability Survey, CIGRE Working Group A2.37, December 2015.
  • 4. Darmawan M A, Khayam U. Design, simulation, and fabrication of second, third, and forth order Hilbert antennas as ultra high frequency partial discharge sensor. Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering (ICEVT & IMECE), Surakarta 2015: 319-322, https://doi.org/10.1109/ICEVTIMECE.2015.7496707.
  • 5. Dhar S, Ghatak R, Gupta B, Poddar D R. A Wideband Minkowski Fractal Dielectric Resonator Antenna. IEEE Transactions on Antennas and Propagation 2013; 61 (6): 2895-2903, https://doi.org/10.1109/TAP.2013.2251596.
  • 6. Dombek G, Nadolny Z. Liquid kind, temperature, moisture, and ageing as an operating parameters conditioning reliability of transformer cooling system. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18 (3): 413-417, https://doi.org/10.17531/ein.2016.3.13.
  • 7. Endo T, Sunahara Y, Satoh S, Katagi T. Resonant frequency and radiation efficiency of meander line antennas. Electronics & Commun. In Japan 2000; 83 (2): 52-58, https://doi.org/10.1002/(SICI)1520-6432(200001)83:1<52::AID-ECJB7>3.0.CO; 2-7.
  • 8. Fan J, Wang F, Sun Q, Bin F, Ye H, Liu Y. An Online Monitoring System for Oil Immersed Power Transformer Based on SnO2 GC Detector With a New Quantification Approach. IEEE Sensors Journal 2017; 17 (20): 6662-6671, https://doi.org/10.1109/JSEN.2017.2734072.
  • 9. Gulski E, Koltunowicz W, Ariaans T, Behrmann G, Jongen R, Garnacho F, Kornhuber S, Ohtsuka S, Petzold F, Sanchez-Uran M, Siodla K, Tenbohlen S. Cigre Technical Brochure 662. Guidelines for partial discharge detection using conventional (IEC 60270) and unconventional methods, Paris 2016.
  • 10. Mohassel J-A R. Meander Antennas (Doctoral dissertation), The University of Michigan 1982.
  • 11. Judd M D, Farish O, Coventry P F. UHF couplers for GIS - sensitivity and specification. 10th Int. Symp. on High Voltage Engineering (ISH), Montreal 1997.
  • 12. Judd M D, Yang L, Hunter I B. Partial Discharge Monitoring for Power Transformers Using UHF Sensors. Part 1: Sensors and Signal Interpretation, IEEE Electrical Insulation Magazine 2015; 21 (2): 5-14, https://doi.org/10.1109/MEI.2005.1412214.
  • 13. Koltunowicz W, Badicu L V, Broniecki U, Belkov A. Increased operation reliability of HV apparatus through PD monitoring, IEEE Transactions on Dielectrics and Electrical Insulation 2016; 23 (3): 1347-1354, https://doi.org/10.1109/TDEI.2015.005579.
  • 14. Li J, Li X, Du L, Cao M, Qian G. An Intelligent Sensor for the Ultra-High-Frequency Partial Discharge Online Monitoring of Power Transformers. Energies 2016; 9 (5): 383-398, https://doi.org/10.3390/en9050383.
  • 15. Liu J, Zhang G, Dong J, Wang J. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment. Sensors 2015; 15 (11): 29434-29451, https://doi.org/10.3390/s151129434.
  • 16. Paska J. Chosen aspects of electric power system reliability optimization. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2013; 15 (2): 202-208.
  • 17. Przybyłek P, Siodła K. Application of capacitive sensor for measuring water content in electro-insulating liquids. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18 (2): 181-185, https://doi.org/10.17531/ein.2016.2.4.
  • 18. Raja K, Devaus F, Lelaidier S. Recognition of Discharge Sources Using UHF PD Signatures. IEEE Electrical Insulation Magazine 2002; 18 (5): 8-14, https://doi.org/10.1109/MEI.2002.1044316.
  • 19. Robles G, Albarracín R, Vázquez J L. Antennas in Partial Discharge Sensing System. Springer Science, Business Media Singapore 2015, https://doi.org/10.1007/978-981-4560-75-7_95-1.
  • 20. Siegel M, Beltle M, Tenbohlen S, Coenen S. Application of UHF sensors for PD measurement at power transformers. IEEE Transactions on Dielectrics and Electrical Insulation 2017; 24 (1): 331-339, https://doi.org/10.1109/TDEI.2016.005913.
  • 21. Sikorski W, Walczak K, Przybylek P. Moisture Migration in an Oil-Paper Insulation System in Relation to Online Partial Discharge Monitoring of Power Transformers. Energies 2016; 9 (12): 1082-1098, https://doi.org/10.3390/en9121082.
  • 22. Singhal S, Singh A K. CPW-fed hexagonal Sierpinski super wideband fractal antenna. IET Microwaves, Antennas & Propagation 2016; 10 (15): 1701-1707, https://doi.org/10.1049/iet-map.2016.0154.
  • 23. Sun C, Ohodnicki P R, Stewart E M. Chemical Sensing Strategies for Real-Time Monitoring of Transformer Oil: A Review. IEEE Sensors Journal 2017; 17 (18): 5786-5806, https://doi.org/10.1109/JSEN.2017.2735193.
  • 24. Szymczak C, Sikorski W. Projektowanie i optymalizacja anten UHF do monitoringu wyładowań niezupełnych w transformatorze energetycznym. Przegląd Elektrotechniczny 2016; 10: 75-80, https://doi.org/10.15199/48.2016.10.18.
  • 25. Tenbohlen S, Beltle M, Siegel M. PD monitoring of power transformers by UHF sensors. 2017 International Symposium on Electrical Insulating Materials (ISEIM), Toyohashi, Japan 2017: 303-306, https://doi.org/10.23919/ISEIM.2017.8088747.
  • 26. Vinoy K J, Jose K A, Varadan V K, Varadan V V. Hilbert curve fractal antennas with reconfigurable characteristics. 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157), Phoenix, AZ, USA 2001; 1: 381-384.
  • 27. Vinoy K J, Jose K A, Varadan V K. Resonant Frequency of Hilbert Curve Fractal Antennas IEEE Antennas and Propagation Society International Symposium, Boston 2001, https://doi.org/10.1109/APS.2001.960180.
  • 28. Walczak K, Sikorski W, Gil W. Wielomodułowy system monitoringu wyładowań niezupełnych oparty na metodach EA, HF i UHF. Przegląd Elektrotechniczny 2016; 10: 5-9, https://doi.org/10.15199/48.2016.10.02.
  • 29. Yang X, Chiochetti J, Papadopoulos D, Susman L. Fractal Antenna Elements and Arrays. Applied Microwave &Wireless 1999: 34-46.
  • 30. Ziomek W, Kuffel E, Sikorski W, Staniek P, Siodła K. Location and recognition of partial discharge sources in a power transformer using advanced acoustic emission method. Przegląd Elektrotechniczny 2008; 84: 20-23.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd7fee62-a8ad-4e54-b3c3-d7da06482b8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.