PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analyzing square plate in diagonal compression using Beltrami-Michell methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the “Study of photoelasticity and a photoelastic theoretical investigation of the stress distribution in Square Blocks subjected to concentrated diagonal loads”, a thesis topic by M.M. Frocht who developed the well-known semi empirical Shear Stress Difference method. Indeed, the use of the Beltrami-Michell methodology remains quick, when complemented by photoelasticity to acquire Dirichlet’s conditions. The synergy of both methods is enhanced with the use of the finite difference method. In addition, a finite element analysis has provided results that will be a supplementary reference for validation. The results obtained have been of lower cost than those obtained by Frocht.
Rocznik
Strony
847—858
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • LCGE Laboratory, USTO – Mohamed Boudiaf University of Oran, Algeria
autor
  • LRTTFC Laboratory, USTO – Mohamed Boudiaf University of Oran, Algeria
autor
  • Metallurgy Department, USTO – Mohamed Boudiaf University of Oran, Algeria
autor
  • LRTTFC Laboratory, USTO – Mohamed Boudiaf University of Oran, Algeria
Bibliografia
  • 1. Ajovalasit A., Zuccarello B., 2000, Limitation of Fourier transform photoelasticity: influence of isoclinics, Experimental Mechanics, 4, 384-392
  • 2. Ajovalasit A., Barone S., Petrucci G., 1998, A review of automated methods for the collection and analysis of photoelastic data, Strain, 33, 75-91
  • 3. Boresi A.P., Chong K.P., Lee J.D., 2011, Elasticity in Engineering Mechanics, 3rd Edit., John Wiley & Sons, Inc.
  • 4. Collatz L., 1960, The Numerical Treatment of Differential Equations, Springer
  • 5. Dahlquist G., Bjorck A., 1974, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ
  • 6. Duff I., Erisman A., Reid J., 1986, Direct Methods for Sparse Matrices, Oxford University Press, England
  • 7. Fernandez M.S.-B. ` , 2011, Towards uncertainty evaluation in photoelastic measurements, Journal of Strain Analysis, 45, 275-285
  • 8. Fernandez M.S-B., Alegre Calderón J.M., Bravo Diez P.M., Cuesta Se ` gura I.I., 2010, Stress-separation techniques in photoelasticity, Strain, 1, 1-17
  • 9. Frocht M., 1931, A Study of Photoelasticity and a Photoelastic Theoretical Investigation of the Stress Distribution in Square Blocks Subjected to Concentrated Diagonal Loads, Dissertation Topic, Advisor Stephen Prokofyevich Timoshenko. Ph.D. Dissertation, University of Michigan, USA
  • 10. Frocht M., 1941, Photoelasticity, Volume I, John Wiley & Sons, New York
  • 11. Frocht M., 1948, Photoelasticity, Volume II, John Wiley & Sons, New York
  • 12. Hetnarski R.B., Ignaczak J., 2011, The Mathematical Theory of Elasticity, Taylor Francis
  • 13. Kuske A., 1959, Introduction of Photoelasticity (in German), Stuttgart, Wissenschaftliche Verlagsgesellschaft
  • 14. Kuske A., 1971, Handbook of Photoelasticity (in German), Stuttgart: Wiss. Verl. Ges.
  • 15. Kuske A., Robertson G., 1974, Photoelastic Stress Analysis, London, New York, Sydney John Wiley & Sons
  • 16. Madenci E., Guven I., 2005, The Finite Element Method and Applications in Engineering Using ANSYS, Springer
  • 17. Mangal S.K., Ramesh K., 1999, Use of multiple loads to extract continuous isoclinic fringes by phase-shifting, Strain, 35, 15-17
  • 18. McKenney A., Greengard L., Mayo A., 1996, A fast Poisson solver for complex geometries, Journal of Computation Physics, 2, 348-355
  • 19. Muskhelishvili N.I., 1975, Some Basic Problems of the Mathematical Theory of Elasticity, 4th Edit., English translation, L. Noordhoff International Publishing, Leyden
  • 20. Petrucci G., 1997, Full-field automatic evaluation of an isoclinic parameter in white light, Experimental Mechanics, 37, 4, 420-426
  • 21. Pinit P., Umezaki E., 2007, Digitally whole field analysis of isoclinic parameter in photoelasticity by four-step color phase-shifting technique, Optics and Lasers in Engineering, 45, 7, 795-807
  • 22. Ramesh K., 2008, Photoelasticity, Springer Handbook of Experimental Solid Mechanics, Springer Handbook of Experimental Solid Mechanics
  • 23. Rezini D., 1984, Randisochromaten als ausreichende Information zur Spannungstrennung und Spannungsermittelung in der Spannungsoptik, Ph.D. Dissertation, TU-Clausthal, FR Germany
  • 24. Sharafutdinov G. Z., 2012, Basic relations of photoelasticity (I. Allerton Press, Ed.), Allerton Press, Inc., 67, 1, 1-4
  • 25. Shortley G. H., Weller R., 1938, The numerical solution of Laplace’s equation, Appl. Phys.
  • 26. Siegmann P., Colombo C., Daz-Garrido F., Patterson E., 2011, Determination of the isoclinic map for complex photoelastic fringe patterns, Experimwntal and Applied Mechanics, 6, 79-85, Conf. Proc. of the SEM Series 17
  • 27. Smith G., 1985, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford Ed., Clarendon Press
  • 28. Zhang J., 1998, Fast and high accuracy multigrid solution of the three dimensional Poisson equation, Journal of Computation Physics, 2, 449-461
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd7f658b-4901-4fd6-b29d-a4449578a8e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.