PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of pH and loading rate on hydrogen sulphide removal efficiency in a biotrickling filter

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ pH i obciążenia złoża na wydajność usuwania siarkowodoru w biofiltrze zraszanym
Języki publikacji
EN
Abstrakty
EN
Hydrogen sulphide (H₂S) removal is a critical aspect of waste gas treatment, particularly in industries, municipalities, and agriculture. This study investigates the impact of pH and loading rate on the efficiency of hydrogen sulphide removal in biotrickling filters. Biological methods, acknowledged as Best Available Techniques (BAT), are gaining prominence due to their advantages over classical physicochemical methods. The research aims to elucidate the influence of pH levels and loading rates on the performance of biotrickling filters in mitigating hydrogen sulphide emissions. The tests were conducted at constant pH values of 1, 2, 3 and 4, which were automatically maintained using a pump dispensing NaOH solution. The H₂S concentrations at the inlet to the column were selected from a range of 60 – 300 ppm. During the study, the proportions of various groups of microorganisms (mesophilic bacteria for environmental application, potentially pathogenic mesophilic bacteria and microscopic fungi), the loading rate (LR), elimination capacity (EC), and removal efficiency (RE) were determined at pilot-scale level, with gas volume flow rates of 40 Lˑmin-1 During the series of measurements, a maximum elimination capacity of the biotrickling filter of 224 g H₂S/(m3ˑh), with nearly 100 % H₂S removal, was achieved.
PL
Badanie wpływu pH oraz obciążenia złoża na skuteczność usuwania siarkowodoru (H₂S) w biofiltrach zraszanych, z naciskiem na optymalizację parametrów operacyjnych dla procesów oczyszczania gazów. W badaniach zastosowano pilotażową instalację biofiltra zraszanego z wypełnieniem z pianki poliuretanowej. Testy przeprowadzono przy stałych poziomach pH (1, 2, 3 i 4) oraz zmiennych stężeniach H₂S na wlocie (60–300 ppm). Analizowano parametry takie jak szybkość biofiltracji (EC), skuteczność usuwania (RE) oraz strukturę mikrobiologiczną biofilmu. Warunki procesowe, w tym pH, przewodność i potencjał redoks, były automatycznie kontrolowane i monitorowane. Biofiltr zraszany osiągnął maksymalną szybkość biofiltracji wynoszącą 224 g/m³/h przy niemal 100% skuteczności oczyszczania. Zaobserwowano zmienność w strukturze mikrobiologicznej biofilmu wzdłuż wysokości kolumny, zależną od pH oraz stężenia zanieczyszczenia. Stwierdzono, że pH miało minimalny wpływ na szybkość biodegradacji, podczas gdy stężenie zanieczyszczenia na wlocie miało znaczący wpływ na szybkość biofiltracji (EC). Biofiltr zraszany wykazał wysoką skuteczność w usuwaniu H₂S, co ma obiecujące implikacje dla zastosowań przemysłowych. Dalsza optymalizacja parametrów, takich jak czas przebywania gazu w złożu (EBRT) i kontrola pH, może zwiększyć wydajność oraz obniżyć koszty operacyjne.
Rocznik
Strony
85--97
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
  • Wrocław University of Science and Technology, Poland
  • Wrocław University of Science and Technology, Poland
  • Wrocław University of Science and Technology, Poland
  • Tholander Ablufttechnik GmbH, Germany
Bibliografia
  • 1. Abdollahi, M. & Hosseini, A. (2014). Hydrogen Sulfide, in: Encyclopedia of Toxicology, Elsevier.
  • 2. Agency for Toxic Substances and Disease Registry (ATSDR) (2008). Health consultation, exposure investigation report for airborne exposures to hydrogen sulfide
  • 3. Beigi, B.H.M. (2019). Odour Treatment in Sewage Treatment Works. Engineering Doctorate Thesis, University of Surrey, Centre for Environment and Sustainability. URN: 6111100. DOI:10.15126/thesis.00853715
  • 4. Beigi, B.H.M., Thorpe, R.B., Ouki, S., Winter, P. & Waalkens, A. (2019). Hydrogen sulphide and VOC removal in biotrickling filters: Comparison of data from a full-scale, low-emission unit with kinetic models, Chemical Engineering Science, 208, pp. 1-12. DOI:10.1016/j.ces.2019.06.012
  • 5. Chen, Y., Wang, X., He, S., Zhu, S. & Shen, S. (2016). The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H₂S from air, Journal of Environmental Management, 165, pp. 11-16. DOI:10.1016/j.jenvman.2015.09.008
  • 6. Cox, H.H.J. & Deshusses, M.A. (2001). Biotrickling Filters. in: Kennes, C. & Veiga, M.C. (eds.), Bioreactors for Waste Gas Treatment, Springer Science+Business Media, Dordrecht 2001.
  • 7. Danila, V., Zagorskis, A. & Januševičius, T. (2022). Effects of water content and irrigation of packing materials on the performance of biofilters and biotrickling filters: A review, Processes, 10, 1304. DOI:10.3390/pr10071304
  • 8. Dobrzyniewski, D., Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2023). Process control of air stream deodorization from vapors of VOCs using a gas sensor matrix conducted in the biotrickling filter (BTF), Archives of Environmental Protection, 49(2), pp. 85-94. DOI:10.24425/aep.2023.145900
  • 9. Dobslaw, D., Woiski, C., Winkler, F., Engesser, K.H. & Dobslaw, C. (2018). Prevention of clogging in a polyurethane foam packed biotrickling filter treating emissions of 2-butoxyethanol, Journal of Cleaner Production, 200, pp. 609-621. DOI:10.1016/j.clepro.2018.07.248
  • 10. Dobslaw, D. & Ortlinghaus, O. (2020). Biological Waste Air and Waste Gas Treatment: Overview, Challenges, Operational Efficiency, and Current Trends, Sustainability, 12(20), pp. 1-29. DOI:10.3390/su12208577
  • 11. Dobslaw, D. (2023). Integrated treatment process for industrial gas effluent. in: Ho, Lau, Chakraborty, Natarajan & Al Arni (eds.), Advanced Technologies for Solid, Liquid, and Gas Treatment, CRC-Press Taylor & Francis Group, Boca Raton. DOI:10.1201/9781003260738
  • 12. Dumont, E. (2017). Modelling of the performances of a full-scale biotrickling filter treating high H₂S concentration, Journal of Environmental Chemical Engineering, 5(3), pp. 2833-2839. DOI:10.1016/j.jece.2017.05.039
  • 13. Estrada, J.M., Kraakman, B., Lebrero, R. & Muñoz, R. (2012). A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies, Biotechnology Advances, 30, pp. 1354-1363. DOI:10.1016/j.biotechadv.2012.02.010
  • 14. Fernández, M., Ramírez, M., Pérez, R.M., Gómez, J.M. & Cantero, D. (2013). Hydrogen suphide removal from biogas by an anoxic biotrickling filter packed with Pall rings, Chemical Engineering Journal, 225, pp. 456-463. DOI:10.1016/j.cej.2013.04.020
  • 15. Fortuny, M., Baeza, J.A., Gamisans, X., Casas, C., Lafuente, J., Deshusses, M.A. & Gabriel, D. (2008). Biological sweetening of energy gases mimics in biotrickling filters, Chemosphere, 71, pp. 10-17. DOI:10.1016/j.chemosphere.2007.10.058
  • 16. Gabriel, D. & Deshusses, M.A. (2003). Performance of a biotrickling filter full-scale treating H₂S at a gas contact time of 1.6 to 2.2 seconds, Environmental Progress, 22(2), pp. 111-118. DOI:10.1002/ep.670220213
  • 17. González-Sánchez, A., Revah, S. & Deshusses, M.A. (2008). Alkaline biofiltration of H₂S odors, Environmental Science & Technology, 42(19), pp. 7398-7404. DOI:10.1021/es800437f
  • 18. Gupta, A.K., Ibrahim, S. & Al Shoaibi, A. (2016). Advances in sulfur chemistry for treatment of acid gases, Progress in Energy and Combustion Science, 54, pp. 65-92. DOI:10.1016/j.pecs.2015.11.001
  • 19. Habeeb, O.A., Kanthasamy, R., Ali, G.A.M., Sethupathi, S. & Bin Mohd Yunus, R. (2018). Hydrogen sulfide emission sources, regulations, and removal techniques: a review, Reviews in Chemical Engineering, 34(6), pp. 837-854. DOI:10.1515/revce-2017-0004
  • 20. Haosagul, S., Prommeenate, P., Hobbs, G. & Pisutpaisal, N. (2019a). Sulfur-oxidizing bacteria in full-scale biogas cleanup system of ethanol industry, Renewable Energy, pp. 1-10. DOI:10.1016/j.renene.2019.11.140
  • 21. Haosagul, S., Prommeenate, P., Hobbs, G. & Pisutpaisal, N. (2019b). Sulfide-oxidizing bacteria community in full-scale bioscrubber treating H₂S in biogas from swine anaerobic digester, Renewable Energy, pp. 1-10. DOI:10.1016/j.renene.2019.11.139
  • 22. Heaney, C.D., Wing, S., Campbell, R.L., Caldwell, D., Hopkins, B., Richardson, D. & Yeatts, K. (2011). Relation between malodor, ambient hydrogen sulfide, and health in a community bordering a landfill, Environmental Research, 111, pp. 847-852. DOI:10.1016/j.envres.2011.05.021
  • 23. Iranpour, R., Cox, H.H.J., Deshusses, M.A. & Schroeder, E.D. (2005). Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal, Environmental Progress, 24(3), pp. 254-267. DOI:10.1002/ep.10077
  • 24. Kasperczyk, D. & Urbaniec, K. (2015). Application of a compact trickle-bed bioreactor to the biodegradation of pollutants from the ventilation air in a copper-ore mine, Journal of Cleaner Production, 87, pp. 971-976. DOI:10.1016/j.jclepro.2014.09.009
  • 25. Kasperczyk, D., Urbaniec, K., Barbusinski, K., Rene, E.R. & Colmenares-Quintero, R.F. (2019). Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant, Journal of Environmental Management, 236, pp. 413-419. DOI:10.1016/j.jenvman.2019.01.106
  • 26. Kawase, Y., Hirata, A., Kojima, T., Ohmori, S., Akutagawa, H., Uehara, K., Iwata, K., Nakajima, T. & Yamamoto, K. (2014). Improvement of biodegradation in compact co-current biotrickling filter by high recycle liquid flow rate: Performance and biodegradation kinetics of ammonia removal, Process Biochemistry, 49, pp. 1733-1740. DOI:10.1016/j.procbio.2014.06.008
  • 27. Ko, J.H., Xu, Q. & Jang, Y.-C. (2015). Emissions and control of hydrogen sulfide at landfills: A review, Critical Reviews in Environmental Science and Technology, 45, pp. 1-28. DOI:10.1080/10643389.2015.1010427
  • 28. Lambert, T.W., Goodwin, V.M., Stefani, D. & Strosher, L. (2006). Hydrogen sulfide (H₂S) and sour gas effects on the eye: A historical perspective, Science of The Total Environment, 367, pp. 1-22. DOI:10.1016/j.scitotenv.2006.01.034
  • 29. Lafita, C., Penya-Roja, J.M., Sempere, F., Waalkens, A. & Gabaldon, C. (2012b). Hydrogen sulfide and odor removal by field-scale biotrickling filters: Influence of seasonal variations of load and temperature, Journal of Environmental Science and Health, Part A, 47, pp. 970-978. DOI:10.1080/10934529.2012.667302
  • 30. López, M.E., Rene, E.R., Malhautier, L., Rocher, J., Bayle, S., Veiga, M.C. & Kennes, C. (2013). One-stage biotrickling filter for the removal of a mixture of volatile pollutants from air: Performance and microbial community analysis, Bioresource Technology, 138, pp. 245-251. DOI:10.1016/j.biortech.2013.03.136
  • 31. López, L.R., Bezerra, T., Mora, M., Lafuente, J. & Gabriel, D. (2016). Influence of trickling liquid velocity and flow pattern in the improvement of oxygen transport in aerobic biotrickling filters for biogas desulfurization, Journal of Chemical Technology and Biotechnology, 91, pp. 1031-1039. DOI:10.1002/jctb.4696
  • 32. McNevin, D. & Barford, J. (2000). Biofiltration as an odour abatement strategy, Biochemical Engineering Journal, 5, pp. 231-242. DOI:10.1016/s1369-703x(00)00064-4
  • 33. Melse, R.W., Ploegaert, J.P.M. & Ogink, N.W.M. (2012). Biotrickling filter for the treatment of exhaust air from a pig rearing building: Ammonia removal performance and its fluctuations, Biosystems Engineering, 113, pp. 242-252. DOI:10.1016/j.biosystemseng.2012.08.010
  • 34. Montebello, A.M., Mora, M., López, L.R., Bezerra, T., Gamisans, X., Lafuente, J., Baeza, M. & Gabriel, D. (2014). Aerobic desulfurization of biogas by acidic biotrickling filtration in a randomly packed reactor, Journal of Hazardous Materials, 264, pp. 516-523. DOI:10.1016/j.jhazmat.2013.11.016
  • 35. Parzentna-Gabor, A., Kasperczyk, D., Barbusinski, K., Rene, E.R. & Urbaniec, K. (2023). Odor and volatile organic compounds biotreatment using compact trickle bed bioreactors (CTBB) in a wastewater treatment plant, Bioresource Technology, 376, 128876. DOI:10.1016/j.biortech.2023.128876
  • 36. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka, I. (2022). Preliminary analysis of the state of municipal waste management technology in Poland along with the identification of waste treatment processes in terms of odor emissions, Archives of Environmental Protection, 48(3), pp. 3-20. DOI:10.24425/aep.2022.142685
  • 37. Quijano, G., Figueroa-González, I. & Buitrón, G. (2018). Fully aerobic two-step desulfurization process for purification of highly H₂S-laden biogas, Journal of Chemical Technology & Biotechnology, 93, pp. 3553-3561. DOI:10.1002/jctb.5732
  • 38. Rodriguez, G., Dorado, A.D., Fortuny, M., Gabriel, D. & Gamisans, X. (2014). Biotrickling filters for biogas sweetening: Oxygen transfer improvement for a reliable operation, Process Safety and Environmental Protection, 92, pp. 261-268. DOI:10.1016/j.psep.2013.02.002
  • 39. Romanik, E., Miller, U., Dehghani, M. & Sówka, I. (2023). Preliminary studies on the optimisation of the operating conditions of the BTF for the hydrogen sulfide removal. in: Korzystka-Muskała, M. (ed.), 4th Symposium "Air Quality and Health": Book of Abstracts, Institute of Geography and Regional Development, University of Wrocław, pp. 106-106, Wrocław 2023.
  • 40. Rubright, S.L.M., Pearce, L.L. & Peterson, J. (2017). Environmental toxicology of hydrogen sulfide, Nitric Oxide, 71, pp. 1-13. DOI:10.1016/j.niox.2017.09.011
  • 41. Runye, Z., Kennes, C., Zhuowei, C., Lichao, L., Jianming, Y. & Jianmeng, C. (2015). Styrene removal in a biotrickling filter and a combined UV-biotrickling filter: Steady- and transient-state performance and microbial analysis, Chemical Engineering Journal, 275, pp. 168-178. DOI:10.1016/j.cej.2015.04.016
  • 42. Sakuma, T., Hattori, T. & Deshusses, M.A. (2006). Comparison of different packing materials for the biofiltration of air toxics, Journal of the Air & Waste Management Association, 56(11), pp. 1567-1575. DOI:10.1080/10473289.2006.10464564
  • 43. Schmidt, T. & Anderson, W.A. (2017). Biotrickling filtration of air contaminated with 1-butanol, Environments, 4(3), 57. DOI:10.3390/environments4030057
  • 44. Sempere, F., Winter, P., Waalkens, A., Hühnert, N., Cranshaw, I., Beigi, B. & Thorpe, R.B. (2018). Treatment of discontinuous emission of sewage sludge odours by a full-scale biotrickling filter with an activated carbon polishing unit, Water Science & Technology, pp. 1-8. DOI:10.2166/wst.2018.203
  • 45. Smreczak, B., Klimkowicz-Pawlas, A. & Maliszewska-Kordybach, B. (2013). Bioavailability of persistent organic pollutants (POPs) in soils, Studia i Raporty IUNG-PIB, 35(9), pp. 137-153. (in Polish)
  • 46. Sorokin, D.Y. & Kuenen, J.G. (2005). Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes, FEMS Microbiology Reviews, 29(4), pp. 685-702. DOI:10.1016/j.femsre.2004.10.005
  • 47. Spennati, F., Mannucci, A., Mori, G., Giordano, C. & Munz, G. (2017). Moving bed bio tricling filters: An innovative solution for hydrogen sulphide removal from gas streams, Desalination and Water Treatment, 61, pp. 215-221. DOI:10.5004/dwt.2016.11138
  • 48. Tayar, S.P., Guerrero, R.D.B.S., Hidalgo, L.F. & Bevilaqua, D. (2019). Evaluation of biogas biodesulfurization using different packing materials, Chemical Engineering, 3(1), p. 27. DOI:10.3390/chemengineering3010027
  • 49. Trisakti, B., Matseh, I., Sidabutar, R., Azis, A., Nasution, J.A. & Pasaribu, K. (2024). Removal of H₂S from rich solution in absorption process by utilizing Thiobacillus sp., E3S Web of Conferences, 519, 04013. DOI:10.1051/e3sconf/202451904013
  • 50. Tsang, Y.F., Wang, L. & Chua, H. (2015). Simultaneous hydrogen sulphide and ammonia removal in a biotrickling filter: Crossed inhibitory effects among selected pollutants and microbial community change, Chemical Engineering Journal, 281, pp. 389-396. DOI:1016/j.cej.2015.06.107
  • 51. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste, Archives of Environmental Protection, 46(3), pp. 60-68. DOI:10.24425/aep.2020.134536
  • 52. Wu, J., Jian, X., Jin, Z., Yan, S. & Zhang, J. (2020). The performance and microbial community in a slightly alkaline biotrickling filter for the removal of high concentration H₂S from biogas, Chemosphere, 249, 126127. DOI:10.1016/j.chemosphere.2020.126127
  • 53. Ying, S., Kong, X., Cai, Z., Man, Z., Xin, Y. & Liu, D. (2020). Interactions and microbial variations in a biotrickling filter treating low concentrations of hydrogen sulfide and ammonia, Chemosphere, 126931. DOI:10.1016/j.chemosphere.2020.126931
  • 54. Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N. & Verstraete, W. (2008). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review, Water Research, 42, pp. 1-12. DOI:10.1016/j.watres.2007.07.013
  • 55. Zhang, M., Xue, Q., Zhang, S., Zhang, Y., Yin, W., Zhang, Y. & Liu, Y. (2021). Development of whole-cell catalyst system for sulfide biotreatment based on the engineered haloalkaliphilic bacterium, AMB Express, 11, 142. DOI:10.1186/s13568-021-01302-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd77527f-3227-44f2-958a-6ca56908ceaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.