PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soil Redox Potential and its Impact on Microorganisms and Plants of Wetlands

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although peatlands cover only 3% of the Earth’s surface, they constitute a huge reservoir of carbon. It is estimated that they accumulate one third of carbon contained in all types of soils worldwide. Therefore, knowledge of the physical, chemical, and biological properties of peat is important for prevention of peat degradation and release of carbon stored as CO2 into the atmosphere. In organic soils, water plays a very important role as a protective factor against mineralisation of organic matter. Therefore, organic soils are characterised by high specificity and dissimilarity from mineral soils. The hydrological factor induces a variety of changes in the physical and chemical properties, e.g. low redox potential or low oxygen content in soil pores. Many soil processes are determined by the soil oxygenation status, which can be measured with various indicators as well as direct and indirect measurements. One of the indirect methods is measurement of the redox potential. The oxidation-reduction potential (redox potential or Eh) is a measure of the ratio of oxidised to reduced forms in a solution. This parameter is inextricably linked to oxygen supply and the processes of consumption thereof by microorganisms and plant roots. Therefore, the redox potential is used as an indicator of the oxygenation status and the content of biogenic forms and toxins in the soil environment and sediments. In the case of submerged soils, penetration of atmospheric oxygen into the soil is limited due to low rates of oxygen diffusion and, hence, low redox potential, which inhibits plant growth through inhibition of respiration and production of toxins in reducing conditions. The aim of this article is (1) to the show soil-plant-soil microorganism interactions taking place on peatbogs in the context of redox potential, (2) to investigate the responses of plants and soil microorganisms to the changing redox potential, and (3) to demonstrate the mechanisms of plant adaptation to the reducing conditions prevailing in peatbogs.
Rocznik
Strony
20--30
Opis fizyczny
Bibliogr. 100 poz., rys.
Twórcy
autor
  • Institute of Soil Science And Environment Management, University of Life Sciences in Lublin, S. Leszczyńskiego Str. 7, 20–069 Lublin, Poland
autor
  • Institute of Soil Science And Environment Management, University of Life Sciences in Lublin, S. Leszczyńskiego Str. 7, 20–069 Lublin, Poland
Bibliografia
  • 1. Balakhnina T.I., Bennicelli R.P., Stepniewska Z., Stepniewski W., Fomina I.R., 2010. Oxidative damage and antioxidant defense system in leaves of Vicia faba major L. cv. Bartom during soil flooding and subsequent drainage. Plant Soil 327, 293–301.
  • 2. Banker B.C., Kludze H.K., Alford D., DeLaune R.D., Lindau C.W., 1995. Methane sources and sinks in paddy rice soils: relationship to emissions. Agric. Ecosyst. Environ., 53, 243–251.
  • 3. Bennicelli R.P., Szafranek A., Stępniewska Z., 2006. Influence of redox conditions on methane release from peat soils. Proc. ISTRO 17, 1114–1119.
  • 4. Bohrerova Z., Stralkova R., Podesvova J., Bohrer G., Pokorny E., 2004. The relationship between redox potential and nitrification under different sequences of crop rotations. Soil. Till. Res. 77, 25–33.
  • 5. Brady N.C,. Weil R.R., 2010. Elements of the nature and properties of soils. Pearson Education International, New Jersey.
  • 6. Carter C.E., 1980. Redox potential and sugarcane yield relationship. T ASABE 23, 924–927.
  • 7. Catallo W.J., Gambrell R.P., 1994. Fate and effects of N-, O-, and S- heterocycles (NOSHs) from petroleum and pyrogenic sources in marine sediments. U.S. Department of the Interior, Minerals Management Service, OSC Study MMS, 94-0056, pp. 75.
  • 8. Catallo W.J., Schlenker M., Gmbrell R.P., Shane B.S., 1995. Toxic chemicals and trace metals from urban and rural Louisiana lakes: recent historical profiles and toxicological significance. Environmental Science and Technology, 29(6), 1436–1445.
  • 9. Chadwick O.A., Chorover J., 2001. The chemistry of pedogenic thresholds. Geoderma 100, 321–353.
  • 10. Chesworth W., 2004. Redox, soils, and carbon sequestration. Edafologia, 11(1), 37–43.
  • 11. Cogger C.G., Kennedy P.E., 1992. Seasonally saturated soils in the Puget lowland. I. Saturation, reduction and color patterns. Soil Science, 153(6), 421–433.
  • 12. Cogger C.G., Kennedy P.E., Carlson D., 1992. Seasonally saturated soils in the Puget lowland. II. Measuring and interpreting redox potentials. Soil Science, 153(6), 50–58.
  • 13. Coleman D.C., Odum E.P., Crossley D. A. Jr., 1992. Soil biology, soil ecology, and global change. Biology and Fertility of Soils, 14, 104–111.
  • 14. Crawford R.M.M., 1992. Oxygen availability as an ecological limit to plant distribution. Adv. Ecol. Res., 23, 93–285.
  • 15. Dat J.F., Capelli N., Folzer H., Bourgeade P., Badot P. M., 2004. Sensing and signaling during plant flooding. Plant Physiol. Biochem., 42, 273–282.
  • 16. De Mars H., Wassen M.J., 1999. Redox potentials in relation to water levels in different mire types in the Netherlands and Poland. Plant Ecology, Volume 140, 1, 41–51.
  • 17. DeLaune R.D., Jugsujinda A., Reddy K.R., 1999. Effect of root oxygen stress on phosphorus uptake by cattail. J. Plant Nutr., 22, 459–466.
  • 18. DeLaune R.D., Pezeshki S.R., 1991. Role of soil chemistry in vegetative ecology of wetlands. Trends in Soil Science, 1, 101–113.
  • 19. DeLaune R.D., Pezeshki S.R., Lindau C.W., 1998. Influence of soil redox potential on nitrogen uptake and growth of wetland oak seedlings. J. Plant Nutr., 21, 757–768.
  • 20. DeLaune R.D., Pezeshki S.R., Pardue J.H., 1991. An oxidation-reduction buffer for evaluating physiological response of plants to root oxygen stress. Environ. Exp. Bot., 30, 243–247.
  • 21. Dessaux Y., Hinsinger P., Lemanceau P., 2009. Rhizosphere: so many achievements and even more challenges. Plant Soil, 321, 1–3.
  • 22. Drew M.C., 1990. Sensing soil oxygen. Plant Cell Environ., 13, 681–693.
  • 23. Drew M.C., 1997. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Ann. Rev. Plant Physiol. Plant Mol. Biol., 48, 223–250.
  • 24. Dwire K.A., Kauffman J.B., Baham J.E., 2006. Plant species distribution in relation to water-table depth and soil redox potential in Montane riparian meadows. Wetlands. 26, 131–146.
  • 25. Evans D.E., 2004. Aerenchyma formation. New Phytol. 161, 35–49.
  • 26. Falkowski P.G., Fenchel T., Delong E.F., 2008.The microbial engines that drive Earth’s biogeochemical cycles. Science, 320, 1034–1039.
  • 27. Fenchel T., King G.M., Blackburn T.H., 2012. Bacterial biogeochemistry. The ecophysiology of mineral cycling. Academic, San Diego.
  • 28. Fernandez M.R., Zentner R.P., Basnyat P., Gehl D., Selles F., Huber D., 2009. Glyphosate associations with cereal diseases caused by Fusarium spp. in the Canadian Prairies. European J. Agron., 31, 133–143.
  • 29. Fiedler S., Sommer M., 2004. Water and redox conditions in wetland soils – their influence on pedogenic oxides and morphology. Soil Science Society of America Journal, 68, 326–335.
  • 30. Fiedler S., Vepraskas M.J., Richardson J.L., 2007. Soil redox potential: Importance, field measurements, and observations. Adv. Agron., 94, 1–54.
  • 31. Fierer N., Jackson R.B., 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA, 103, 626–631.
  • 32. Flessa H., Fischer W., 1992. Plant-induced changes in the redox potentials of rice rhizospheres. Plant Soil 143, 55–60.
  • 33. Frohne T., Rinklebe J., Diaz-Bone R.A., Du Laing G., 2011. Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 160, 414–424.
  • 34. Gambrell R.P., 1994. Trace and toxic metals in wetlands – A review. Journal of Environmental Quality, 23, 883–891.
  • 35. Gambrell R.P., DeLaune R.D., Patrick W.H., 1991. Redox Processes in Soils Following Oxygen Depletion. [In:] Jackson M.B., Davies D.D., Lambers H. [eds.] Plant Life Under Oxygen Deprivation: Ecology, Physiology, and Biochemistry; SPB Academic Publishing BV: The Hague, The Netherlands, 101–117.
  • 36. Gliński J., Stępniewski W., 1985. Soil aeration and its role for plants. CRC, Boca Raton.
  • 37. Greenway H., Armstrong W., Colmer T.D., 2006. Coditions leading to high CO2 [>5 kPa] in waterlogged flooded soils and possible effects on root growth and metabolism. Ann. Bot., 98, 9–32.
  • 38. Grenthe I., Stumm W., Laaksuharju M., Nilsson A. C., Wikberg P., 1992. Redox potentials and redox reactions in deep groundwater systems. Chemical Geology, 98, 131–150.
  • 39. Gries C., Kappen L., Losch R., 1990. Mechanism of flood tolerance in reed (Phragmites australis). New Phytol., 114, 589–593.
  • 40. Hartmann A., Schmid M., van Tuinen D., Berg G., 2009. Plant driven selection of microbes. Plant Soil 321, 235–257.
  • 41. Hattori Y., Nagai K., Furukawa S., Song X., Kawano R., Sakakibara H., Wu J., Matsumoto T., Yoshimura A., Kitano H. et al. 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460, 1026–1030.
  • 42. Heijnen C.E., van Veen J.A., 1991. A determination of protective microhabitats for bacteria introduced into soil. FEMS, Microbiol. Lett. 85, 73–80.
  • 43. Heintze S.G., 1934. The use of the glass electrode in soil reaction and oxidation-reduction potential measurements. J. Agric. Sci. (24), 28–41.
  • 44. Hines M.E., 2006. Microbially mediated redox cycling at the oxic-anoxic boundary in sediments: comparison of animal and plants habitats. Water Air Soil Pollut., 6, 523–536.
  • 45. Hinsinger P, Bengough A.G., Vetterlein D., Young I.M., 2009. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil, 321, 117–152.
  • 46. Hopkins W.G., Huner N.P., 2009. Introduction to Plant Physiology, 4th ed.; John Wiley & Sons, Inc.: New York, NY, USA, pp. 503.
  • 47. Inglett P.W., Reddy K.R., Corstanje R., 2005. Anaerobic soils. [In:] Hillel D. (ed) Encyclopedia of soils in the environment. Academic Press, London, 72–78.
  • 48. Jackson M.B., 2002. Long-distance signaling from roots to shoots assessed: The flooding story. J. Exp. Bot., 53, 175–181.
  • 49. Kashem M.A., Singh B.R. 2001. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr. Cycl. Agroecosys. 61, 247–255.
  • 50. Kaurichev I.S., Shishova V.S., 1967. Oxidation reduction conditions of coarse textured soils of the Meschera lowland. Sov. Soil Sci. 5, 636–646.
  • 51. Kemmou S., Dafir J.E., Wartiti M., Taoufik M., 2006. Seasonal variations and potential mobility of sediment phosphorus in the Al Massira reservoir, Morocco. Water Quality Research J. Can., 41, 427–436.
  • 52. Kennedy R.A., Rumpho M.E., Fox T.C., 1992. Aerobic metabolism in plants. Plant Phys., 100, 1–6.
  • 53. Kludze H.K., DeLaune R.D., 1995a. Gaseous exchange and wetland plant response to soil redox intensity and capacity. Soil Sci. Soc. Am. J., 59, 939–945.
  • 54. Kludze H.K., DeLaune R.D., 1995b. Straw application effects on Methane and oxygen exchange and growth in rice. Soil Sci. Soc. Am. J., 59, 824–830.
  • 55. Kogawara S., Yamanoshita T., Norisada M., Masumori M., Kojima K., 2006. Photosynthesis and photoassimilate transport during root hypoxia in Melaleuca cajuputi, a flood-tolerant species, and in Eucalyptus camadulensis, a moderately flood-tolerant species. Tree Physiol., 26, 1413–1423.
  • 56. Kogel-Knabner I., Amelung W., Cao Z., Fiedler S., Frenzel P., Jahn R., Kalbitz K., Kolbl A., Schloter M., 2010. Biogeochemistry of paddy soils. Geoderma 157, 1–14.
  • 57. Kuzyakov Y., Domanski G., 2000. Carbon input by plants into the soil. Review. J. Plant Nutr. Soil Sc., 163, 421–431.
  • 58. Lambers H., Chapin S. F. I., Pons T. L., 2008. Plant physiological ecology. Springer, New York.
  • 59. Lauber C.L., Hamady M., Knight R., Fierer N., 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120.
  • 60. Lindsay W.L., 1991. Iron oxide solubilisation by organic matter and its effect on iron availability. [In:] Chen Y., Hadar Y. (eds.) Iron Nutrition and Interactions in Plants. Kluwer Academic Publishers, The Netherlands.
  • 61. Lovley D.R., Fraga J.L., B-H EL, Hayes L.A., Phillips E.J.P., Coates J.D., 1998. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim. Hydrobiol. 26, 152–157.
  • 62. Lüdemann H., Arth I., Liesack W. 2000. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soils cores. Appl. Environ. Microbiol., 66, 754–762.
  • 63. MacDonald R.C., Kimmerer T.W., 1993. Metabolism of transpired ethanol by eastern cottonwood (Populus deltoides). Plant Physiol., 102, 173–179.
  • 64. Macías F., Camps-Arbestain M., 2010. Soil carbon sequestration in a changing global environment. Mitig. Adapt. Strateg. Glob. Change, 15, 511–529.
  • 65. Manahan S.F., 2001. Fundamentals of environmental chemistry. Second edition. CRC Press.
  • 66. Mansfeldt T., 2003. In situ long-term redox potential measurements in a dyked marsh soil. J. Plant. Nutr. Soil. Sci. 166, 210–219.
  • 67. McKersie B.D., Leshem Y.Y., 1994. Stress and stress coping in cultivated plants, Kluwer Academic Publisher.
  • 68. Meyers P.A., Ishiwatari R., 1993. lacustrine organic geochemistry- an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20(7), 867–900.
  • 69. Miller F.C., Macauley B.J., Haeper E.R., 1991. Investigation of various gases, pH and redox potential in mushroom composting Phase I stacks. Aust. J. Exp. Agr., 415–425.
  • 70. Mitsch W.J., Gosselink J.G., 2007. Wetlands, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, pp. 582.
  • 71. Nyman J.A., DeLaune R.D., 1991. CO2 emission and soil Eh responses to different hydrological conditions in fresh, brackish, and saline marsh soils. Limnology and Oceanography, 36(7), 1406–1414.
  • 72. Pennington M.R., Walters M.B., 2006. The response of planted trees to vegetation zonation and soil, redox potential in created wetlands. For Ecol. Manage. 233, 1–10.
  • 73. Pett-Ridge J., Firestone M.K., 2005. Redox fluctuation structures microbial communities in a wet tropical soil. Appl. Environ. Microbiol. 71, 6998–7007.
  • 74. Pezeshki S.R., 2001. Wetland plant responses to soil flooding. Environ. Exp. Bot. 46, 299–312.
  • 75. Potter M.C., 1911. Electrical effects accompanying the decomposition of organic compounds. Proc. Roy. Soc. Lond. B 84, 260–278.
  • 76. Reddy K.R., DeLaune R.D., 2008. Biogeochemistry of Wetlands; Science and Applications, CRC Press, Boca Raton, FL, Taylor & Francis Group.
  • 77. Rusanov A. M., Anilova L. V., 2009. The humus formation and humus in forest-steppe and steppe chernozems of the southern Cisural region. Eurasian Soil Sci. 42, 1101–1108.
  • 78. Sabiene N., Kusliene G., Zaleckas E., 2010. The influence of land use on soil organic carbon and nitrogen content and redox potential. Zemdirbyste 97, 15–24.
  • 79. Seo D.C., DeLaune R.D., 2010. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment. Science Total. Environment 408, 3623–3631.
  • 80. Sexstone A.J., Revsbech N.P., Parkin T.B., Tiedje J.M., 1985. Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci. Soc. Am. J. 49, 645–651.
  • 81. Simek M., Cooper J.E., 2002. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil. Sci. 53, 345–354.
  • 82. Smith C.J., Patrick W.H., 1983. Nitrous oxide emission as affected by alternate anaerobic and aerobic conditions from soil suspensions enriched with ammonium sulfate. Soil Biology and Biochemistry, 15(6), 693–697.
  • 83. Snakin V.V., Prisyazhnaya A.A., Kovacs-Lang E., 2001. Soil liquid phase composition. Elsevier Science B.V, Amsterdam.
  • 84. Song Y., Deng S.P., Acosta-Martinez V., Katsalirou E., 2008. Characterization of redox-related soil microbial communities along a river floodplain continuum by fatty acid methyl ester (FAME) and 16S rRNA genes. Appl. Soil Ecol., 40, 499–509.
  • 85. Stępniewska Z., Przywara G., Bennicelli R.P., 2004. Plant response under anaerobic conditions. Acta Agrophysica, 113 (7), 5-86.
  • 86. Stępniewski W., Bennicelli R.P., Gliński J., Stępniewska Z., 2005. Oxygenology in outline. Lublin Institute of Agrophysics of the Polish Academy of Science.
  • 87. Stottmeister U., Wießner A., Kuschk P., Kappelmeyer U., Kastner M., Bederski O., Muller R.A., Moormann H., 2003. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances 22, 93–117.
  • 88. Szafranek-Nakonieczna A., Stęniewska Z., 2015. The influence of the aeration status (ODR, Eh) of peat soils on their ability to produce methane. Wetlands Ecol. Manage. DOI 10.1007/s11273-015- 9410-x.
  • 89. Theng B.K.G., Orchard V.A., 1995. Interactions of clays with microorganisms and bacterial survival in soil: a physicochemical perspective. [In:] Huang P.M., Berthelin J., Bollag J.M., McGill W.B., Page A.L. [eds] Environmental impact of soil component interactions. Vol. 2 metals, other inorganics, and microbial activities. CRC Press/Lewis, Boca Raton, 123–143.
  • 90. Thomas K.L,. Benstead J., Davies K.L., Lloyd D. 1996. Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biol. Biochem. 28, 17–23.
  • 91. Unger I.M., Muzika R.M., Motavalli P.P., Kabrick J., 2008. Evaluation of continuous in situ monitoring of soil changes with varying flooding regimes. Commun. Soil Sci, Plant, 39, 1600–1619.
  • 92. Vartapetian B.B., Jackson M.B., 1997. Plant adaptations to anaerobic stress. Ann. Bot. 79 (Suppl. A), 3–20.
  • 93. Volk N.J., 1993. The effect of oxidation–reduction potential on plant growth. J. Am. Soc. Agron. 31, 665–670.
  • 94. Von de Kammer F., Thöming J., Förstner U., 2000. Redox buffer capacity concept as a tool for the assessment of long-term effects in natural attenuation / intrinsic remediation. [In:] Schüring J., Schultz H.D., Fischer W.R., Böttcher J., Duijnisveld W.H.M. (eds.) Redox: fundamentals, processes and applications. Springer-Verlag, Berlin, 189–202.
  • 95. Wardle D.A., 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. 67, 321–358.
  • 96. White J.R., Reddy K.R., 2001. Influence of selected inorganic electron acceptors on organic nitrogen mineralization in Everglades soils. Soil Science Society of America Journal, 65, 941–948.
  • 97. Włodarczyk T., 2000. Emisja i absorpcja N2O na tle emisji CO2 w glebach brunatnych w zróżnicowanych warunkach oksydoredukcyjnych. Acta Agrophysica, 28, 5–115.
  • 98. Yavitt J.B., Knapp A.K., 1995. Methane emission to the atmosphere through emergent cattail (Typha latifolia L.) plants. Tellus, 47B, 521–534.
  • 99. Yu K., Bohme F., Rinklebe J., Neue H.-U., DeLaune R.D., 2007. Major biogeochemical processes in soils – a microcosm incubation from reducing to oxidizing conditions. Soil Sci. Soc Am. J., 71, 1406–1417.
  • 100. Yu Z., 2012. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 9, 4071–4085.
Uwagi
EN
Editors removed the article from the website, because of detected a large-scale plagiarism of Open Access review article by Dr. Olivier Husson entitled “Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy” – published in journal “Plant and Soil” Vol. 362, Iss. 1, 2013, pp. 389-417, DOI 10.1007/s11104-012-1429-7. [Źródło: http://www.jeeng.net/SOIL-REDOX,2801,0,2.html]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd728629-08b1-46b4-9eb1-fbfc34313c6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.