PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selection of most proper blasting pattern in mines using linear assignment method: Sungun copper mine

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wybór najodpowiedniejszego schematu prowadzenia prac strzałowych w kopalni miedzi Sungun z użyciem metody przyporządkowania liniowego
Języki publikacji
EN
Abstrakty
EN
One of the most important operations in mining is blasting. Improper design of blasting pattern will cause technical and safety problems. Considering impact of results of blasting on next steps of mining, correct pattern selection needs a great cautiousness. In selecting of blasting pattern, technical, economical and safety aspects should be considered. Thus, most appropriate pattern selection can be defined as a Multi Attribute Decision Making (MADM) problem. Linear assignment method is one of the very applicable methods in decision making problems. In this paper, this method was used for the first time to evaluate blasting patterns in mine. In this ranking, safety and technical parameters have been considered to evaluate blasting patterns. Finally, blasting pattern with burden of 3.5 m, spacing of 4.5 m, stemming of 3.8 m and hole length of 12.1 m has been presented as the most suitable pattern obtained from linear assignment model for Sungun Copper Mine.
PL
Jedną z najpoważniejszych operacji wykonywanych w ramach prac wydobywczych są prace strzałowe. Niewłaściwe rozplanowanie prac powoduje problemy techniczne i stanowi zagrożenie dla bezpieczeństwa. Z uwagi na potencjalne skutki prac strzałowych i ich wpływ na kolejne etapy procesu wydobycia, właściwe rozplanowanie tych prac wymaga wielkiej uwagi i uwzględnienia kwestii technicznych, ekonomicznych a także bezpieczeństwa pracy. Dlatego też wybór najodpowiedniejszego schematu prowadzenia prac strzałowych zdefiniować można jako wieloatrybutowy problem decyzyjny (MADM – Multi Attribute Decision Making). Metoda przyporządkowania liniowego jest jedną z metod mających zastosowanie w rozwiązywaniu problemów decyzyjnych. W obecnej pracy metoda ta wykorzystana została po raz pierwszy do oceny schematów prowadzenia prac strzałowych w kopalni, w procedurze uwzględniono parametry techniczne oraz parametry związane z bezpieczeństwem. Zaprezentowano wybrany przy pomocy metody najkorzystniejszy schemat prowadzenia prac strzałowych w kopalni miedzi Sungun: nadkład 3.5m, odległości pomiędzy otworami 4.5 m, zastosowana przybitka 3.8 m, długość otworu strzałowego 12.1 m.
Rocznik
Strony
375--386
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
  • Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
autor
  • Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
autor
  • Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
Bibliografia
  • [1] Ak H., Iphar M., Yavuz M., Konuk A., 2009. Evaluation of ground vibration effect of blasting operations in a magnesie mine. Soil Dynamics and Earthquake Engineering, 29, 669-676.
  • [2] Amini H., Gholami R., Monjezi M., Torabi S.R., Zadhesh J., 2011. Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Computing & Applications, 1-9.
  • [3] Ataei M., Sereshki F., Jamshidi M., Jalali S., 2008. Suitable mining method for Golbini No. 8 deposit in Jajarm (Iran) using TOPSIS method. Mining Technology, 117, 1-5.
  • [4] Bajpayee T., Bhatt S.K., Rehak T.R., Engineer G., Mowrey G.L., Ingram D.K., 2003. Fatal accidents due to flyrock and lack of blast area security and working practices in mining. Journal of mines, metals and fuels, 51, 344-349.
  • [5] Bajpayee T., Rehak T., Mowrey G., Ingram D., 2002. A Summary of Fatal Accidents Due to Flyrock and Lack of Blast Area Security in Surface Mining, 1989 to 1999. Proceedings of The Annual Conference on Explosives and Blasting Technique, ISEE; 1999, p. 105-118.
  • [6] Bajpayee T., Rehak T., Mowrey G., Ingram D., 2004a. Blasting injuries in surface mining with emphasis on flyrock and blast area security. Journal of Safety Research, 35, 47-57.
  • [7] Bajpayee T., Verakis H., Lobb T., 2004b. An Analysis and Prevention of Flyrock Accidents in Surface Blasting Operations. Proceedings of The Annual Conference on Explosives and Blasting Technique, ISEE; 1999, p. 401-410.
  • [8] Bakhshandeh Amnieh H., Siamaki A., Soltani S., 2012. Design of blasting pattern in proportion to the peak particie velocity (PPV): Artificial neural networks approach. Safety Science, 50, 1913-1916.
  • [9] Bazzazi A.A., Osanloo M., Karimi B., 2011. A New Fuzzy Multi Criteria Decision Making Model For Open Pit Mines Equipment Selection. Asia-Pacific Journal of Operational Research, 28, 279-300.
  • [10] Bazzazi A.A., Osanloo M., Soltanmohammadi H., 2008. Loading-haulage equipment selection in open pit mines based on fuzzy-TOPSIS method. Gospodarka Surowcami Mineralnymi, 24.
  • [11] Bejari H., Shahriar K., Hamidi J.K., Shirazi M.A., 2010. Optimal tunneling method selection using fuzzy multiple attribute decision making technique. ISRM International Symposium-6th Asian Rock Mechanics Symposium.
  • [12] Cho S.H., Kaneko K., 2004. Rock fragmentation control in blasting. Materials Transactions, 45, 1722-1730.
  • [13] Dehghani H., Ataee-Pour M., 2011. Development of a model to predict peak particle velocity in a blasting operation. International Journal of Rock Mechanics and Mining Sciences, 48, 51-58.
  • [14] Gate W., Ortiz B., Florez R., 2005. Analysis of rockfall and blasting backbreak problems. Paper ARMA/USRMS, Proceedings of the American rock mechanics conference, p. 671-680.
  • [15] Ghasemi E., Amini H., Ataei M., Khalokakaei R., 2012a. Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. Arabian Journal of Geosciences, 1-10.
  • [16] Ghasemi E., Sari, M., Ataei M., 2012b. Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines. International Journal of Rock Mechanics and Miting Sciences 52, 163-170.
  • [17] Guoliang Z., Sijing C., 2010. The application of fuzzy comprehensive evaluation and Topsis approach to selection of optimum underground mining method. Information Science and Engineering (ICISE), 2010 2nd International Conference on, IEEE, p. 6233-6237.
  • [18] Guosheng Z., Jiang L., Kui Z., 2011. Structural safety criteria for blasting vibration based on wavelet packet energy spectra. Mining Science and Technology, (China,) 21, 35-40.
  • [19] Hudaverdi T., 2012. Application of multivariate analysis for prediction of blast-induced ground vibrations. Soil Dynamice and Earthquake Engineering, 43, 300-308.
  • [20] Hwang C.L., Yoon K., 1981. Multiple attribute decision making: methods and applications: a state-of-the-art survey. Springer-Verlag New York.
  • [21] Inanloo Arabi Shad H., Ahangari K., 2012. An empirical relation to calculate the proper burden in blast design of open pit mines based on modification of the Konya relation. International Journal of Rock Mechanics and Miting Sciences, 56, 121-126.
  • [22] Iphar M., Yavuz M., Ak H., 2008. Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system. Environmental Geolog, 56, 97-107.
  • [23] Jimeno C., 1995. Rock drilling and blasting. AA Balkema, Rotterdam, Brookfield.
  • [24] Kecojevic V., Radomsky M., 2005. Flyrock phenomena and area security in blasting-related accidents. Safety Science, 43, 739-750.
  • [25] Khandelwal M., Monjezi M., 2012. Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method. Rock Mechanics and Rock Engineering, 1-8.
  • [26] Kulatilake P., Qiong W., Hudaverdi T., Kuzu C., 2010. Mean particle size prediction in rock blast fragmentation using neural networks. Engineering Geology, 114, 298-311.
  • [27] Lashgari A., Fouladgar M.M., Yazdani-Chamzini A., Skibniewski M.J., 2011. Using an integrated model for shaft sinking method selection. Journal of Civil Engineering and Management, 17, 569-580.
  • [28] Lashgari A., Yazdani-Chamzini A., Fouladgar M.M., Zavadskas E.K., Shafiee S., Abbate N., 2012. Equipment Selection Using Fuzzy Multi Criteria Decision Making Model: Key Study of Gole Gohar Iron Min. Engineering Economics, 23, 125-136.
  • [29] Lashgari A., Yazdani A., Sayadi A., 2010. Methods for Equipments Selection in Surface Mining; review.
  • [30] Little T., Blair D., 2010. Mechanistic Monte Carlo models for analysis of flyrock risk. Rock Fragmentation by Blasting, 641-647.
  • [31] Michaux S., Djordjevic N., 2005. Influence of explosive energy on the strength of the rock fragments and SAG mill throughput. Minerals Engineering, 18, 439-448.
  • [32] Mikaeil R., Naghadehi M.Z., Ataei M., KhaloKakaie R., 2009. A decision support system using fuzzy analytical hierarchy process (FAHP) and TOPSIS approaches for selection of the optimum underground mining method. Arch. Min. Sci., 54, 341-368.
  • [33] Monjezi M., Ahmadi M., Sheikhan M., Bahrami A., Salimi A., 2010a. Predicting blast-induced ground vibration using various types of neural networks. Soil Dynamics and Earthquake Engineering, 30, 1233-1236.
  • [34] Monjezi M., Amini Khoshalan H., Yazdian Varjani A., 2011. Optimization of Open pit Blast Parameters using Genetic Algorithm. International Journal of Rock Mechanics and Mining Sciences, 48, 864-869.
  • [35] Monjezi M., Amini Khoshalan H., Yazdian Varjani A., 2012. Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach. Arabian Journal of Geosciences, 5, 441.
  • [36] Monjezi M., Dehghan H., Samimi Namin F., 2007. Application of TOPSIS method in controlling fly rock in blasting operations. Proceedings of the seventh international science conference SGEM, Sofia, Bulgaria, p. 41-49.
  • [37] Monjezi M., Dehghani H., 2008. Evaluation of effect of blasting pattern parameters on back break using neural networks. International Journal of Rock Mechanics and Mining Sciences, 45, 1446-1453.
  • [38] Monjezi M., Rezaei M., 2011. Developing a new fuzzy model to predict burden from rock geomechanical properties. Expert Systems with Applications, 38, 9266-9273.
  • [39] Monjezi M., Rezaei M., Yazdian A., 2010b. Prediction of backbreak in open-pit blasting using fuzzy set theory. Expert Systems with Applications, 37, 2637-2643.
  • [40] Morin M.A., Ficarazzo F., 2006. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz-Ram model. Computers & Geosciences, 32, 352-359.
  • [41] Ning K., 1999. Prevention Measures for Controlling Flyrock in Engineering Blasting [J]. Blasting.
  • [42] Pazand K., Hezarkhani A., Ataei M., 2012. Using TOPSIS approaches for predictive porphyry Cu potential mapping: A case study in Ahar-Arasbaran area (NW, Iran). Computers & Geosciences.
  • [43] Peijie Z., Baozhu L., 2011. The application of TOPSIS method to deep mine water environmental quality assessment. Electrical and Control Engineering (ICECE), 2011 International Conference on. IEEE, p. 1802-1806.
  • [44] Rehak T., Bajpayee T., Mowrey G., Ingram D., 2001. Flyrock issues in blasting. Proceedings of The Annual Conference on Explosives and Blasting Technique, ISEE; 1999, p. 165-176.
  • [45] Rezaei M., Monjezi M., Yazdian Varjani A., 2011. Development of a fuzzy model to predict flyrock in surface mining. Safety Science, 49, 298-305.
  • [46] Sanchidrián J., Segarra P., López L., 2006. A practical procedure for the measurement of fragmentation by blasting by image analysis. Rock Mechanics and Rock Engineering, 39, 359-382.
  • [47] Shuran L., Shujin L., 2011. Applying BP Neural Network Model to Forecast Peak Velocity of Blasting Ground Vibration. Procedia Engineering, 26, 257-263.
  • [48] Stojadinović S., Pantović R., Žikić M., 2011. Prediction of flyrock trajectories for forensic applications using ballistic flight equations. International Journal of Rock Mechanics and Mining Sciences, 48, 1086-1094.
  • [49] Tota E.W. , Mudge K., Branson J.W., Georgiou P.N., Gavrilovic M., Watson J.D., 2001. Method and apparatus for flyrock control in small charge blasting. Google Patents.
  • [50] Wu L., Ya ng Y., Zhang Q., 2007. TOPSIS method for evaluation on mine ventilation system. Journal of China Coal Society, 4, 014.
  • [51] Yazdani-C hamzini A., Yakhchali S.H., 2012. Handling equipment Selection in open pit mines by using an integrated model based on group decision making. International Journal of Industrial Engineering 3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd71962c-27e5-4390-b433-a60e0e99c385
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.