PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Powłokowe bariery cieplne typu DCL

Autorzy
Identyfikatory
Warianty tytułu
EN
DCL type thermal barrier coatings
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wyniki mikrostrukturalnych badań powłokowych barier cieplnych typu DCL, tzn. otrzymanych w wyniku natrysku plazmowego dwóch różnych materiałów ceramicznych: 8YSZ i RE2Zr2O7 (gdzie RE = Gd, La, Sm, Nd). Wewnętrzną część warstwy izolującej otrzymano w wyniku natrysku proszku konwencjonalnego 8YSZ bezpośrednio na warstwę żaroodporną NiCrAlY. Strefę zewnętrzną stanowiła warstwa uzyskana w wyniku osadzenia cyrkonianów ziem rzadkich. Ocenie poddano mikrostrukturę warstw, ich grubość i budowę. Stwierdzono, że uzyskano warstwy o grubości od 250 do 320 μm, złożone z trzech stref o zbliżonej grubości. Poza strefami zewnętrzną i wewnętrzną wykazano obecność strefy przejściowej złożonej z 8YSZ oraz RE2Zr2O7. Analizowano również budowę morfologiczną warstwy wierzchniej powłok TBC. Scharakteryzowano jakościowo i ilościowo topografię powierzchni wszystkich badanych powłok. Wykonano badania dyfrakcyjne, które pozwoliły na określenie składu zewnętrznej warstwy izolującej, a także na tej podstawie metodą sin2ψ oszacowano stan naprężeń.
EN
The paper presents the results of microstructural investigations of DCL (double ceramic layer) thermal barrier coatings. The term DCL describes insulating the top surface of a TBC system which comprises two different ceramic materials. It consisted of the zirconates of rare earth elements as the outer part and conventional 8YSZ as the inner part. The obtained DCLs were characterized in terms of their topography, morphology, microstructure, thicknesses of the sublayers and phase composition. The thickness of the obtained DCL’s ranged from 250 to 320 μm, and the entire layers consisted of three sublayers: inner (8YSZ), outer (RE2Zr2O7) and transition, the latter being a mixture of 8YSZ and RE2Zr2O7). Stresses were assessed using XRD measurements and a sin2ψ approach.
Rocznik
Strony
303--307
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Instytut Nauki o Materiałach, Politechnika Śląska, Katowice
Bibliografia
  • [1] DeMasi-Marcin J. T., Gupta D. K.: Protective coatings in the gas turbine engine. Surface and Coating Technology 68-69 (1994) 1÷9.
  • [2] Materials/manufacturing plan for advanced turbine systems program. DOEJOR Report 2007, U.S. Department of Energy, Washington, DC, (1994) [w:] Proceedings of the 1995 Thermal Barrier Coating Workshop. Compiled by W. J. Brindley. NASA Conference Publication 3312 (1995).
  • [3] Lee W. Y., Stinton D. P., Berndt C. C., Erdogan F., Lee Y.-D., Mutasim Z.: Concept of functionally graded materials for advanced thermal barrier coating applications: A review. Journal of the American Ceramic Society 79 (1996) 3003÷3012.
  • [4] Miller R. A.: Current status of thermal barrier coatings – an overview. Surface and Coating Technology 30 (1987) 1÷11.
  • [5] Rabin B. H., Shiota I.: Functionally gradient materials. MRS Bulletin 20 (1995) 14÷22.
  • [6] Erdogan F.: Fracture mechanics of functionally graded materials. MRS Bulletin 20 (1995) 43÷44.
  • [7] Sampath F., Herman H., Shimoda N., Saito T.: Thermal spray processing of FGMs. MRS Bulletin 20 (1995) 27÷31.
  • [8] Swadźba L., Moskal G., Mendala B., Hetmańczyk M.: Characterization of microstructure and properties of TBC systems with gradient of chemical composition and porosity. Archives of Metallurgy and Materials 53 (2008) 945÷954.
  • [9] Eaton H. E., Novak R. C.: Alumina-CoCrAlY material as an improved intermediate layer for graded ceramic gas-path sealing in aeroturbine engines. Ceramic Engineering and Science Proceedings 7 (1986) 727÷736.
  • [10] Tiwari R., Perdikaris C., Berndt C. C., Herman H.: Oxidation of nickiel based bond coat materials. Proceedings of the 1992 Coatings for Advanced Heat Engines Workshop (Monterey, CA, Aug. 1992). U.S. Department of Energy, Washington, DC 11÷25.
  • [11] Miller R. A.: Assessment of fundamentals materials needs for thick thermal barrier coatings (TBC`s) for truck Diesel engines. Proceedings of the 1990 Coatings for Advanced Heat Engines Workshop (Castine, ME, Aug. 1990). U.S. Department of Energy, Washington, DC. II-7.
  • [12] Shinohara Y., Imai Y., Ikeno S.: Thermal stability of plasma-sprayed Ni-Cr-Al-Y/PSZ FGM in uniform and gradient temperature fields. Proceedings of the 3 rd International Symposium on Structural and Functional Gradient Materials. Edited by B. Ilschner and N. Cherradi. Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland (1995) 255÷263.
  • [13] Kumakawa A., Niino M., Kiyoto S., Nagata S.: Thermal fatigue of functionally graded materials under high heat fluxes. Ceramic Transactions 34, Functionally Gradient Materials, Edited by J. B. Holt, M. Koizumi, T. Hirai, and Z. A. Munir, American Ceramic Society, Westerville, OH, (1993) 213÷220.
  • [14] Kuroda K., Kusaka K., Moro A., Togawa M.: Evaluation tests for ZrO2-Ni system. Ceramic Transactions 34, Functionally Gradient Materials, Edited by J. B. Holt, M. Koizumi, T. Hirai, and Z. A. Munir, American Ceramic Society, Westerville, OH (1993) 289÷296.
  • [15] Clyne T. W., Gill S. C.: Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. Journal of Thermal Spray Technology 5 (1996) 401÷418.
  • [16] Alaya M., Grathwohl G., Musil J.: A comparison of thermal cycling and oxidation behaviour of graded and duplex ZrO2-thermal barrier coatings. Ceramic Transactions 34, Functionally Gradient Materials, Edited by J. B. Holt, M. Koizumi, T. Hirai, and Z. A. Munir, American Ceramic Society, Westerville, OH (1993) 405÷412.
  • [17] Jian T. Y., Hashida T., Takahashi H., Shimoda N., Saito M.: An accelerated testing method of ZrO2
  • -based FGM coating for gas turbine blades. Ceramic Transactions 34, Functionally Gradient Materials, Edited by J . B. Holt, M. Koizumi, T. Hirai, and Z. A. Munir, American Ceramic Society, Westerville, OH (1993) 419÷424.
  • [18] Mendelson M. I., McKechnie T. N., Spiegel L. B.: Graded thermal barrier coatings-evaluation. Ceramic Engineering and Science Proceedings 15 (1994) 555÷563.
  • [19] Beardsley M. B.: Application of thick thermal barrier coatings to Diesel engines. Proceedings of the 1990 Coatings for Advanced Heat Engines Workshop (Castine, ME, Aug. 1990). U.S. Department of Energy, Washington, DC 11÷18.
  • [20] Liu Z.-G., Ouyang J.-H., Zhou Y., Xia X. L.: Hot corrosion behaviour of V2O5-coated Gd2Zr2O7 ceramic in air at 700÷850°C. Journal of European Ceramic Society 29 (2009) 2423÷2428.
  • [21] Zhao H. B., Begley M. R., Heuer A., Sharghi-Moshtaghin R., Wadley H. N. G.: Reaction, transformation and delamination of samarium zirconate thermal barrier coatings. Surfaces and Coating Technology 205 (2011) 4355÷4365.
  • [22] Liu Z.-G., Ouyang J.-H., Zhou Y.: Effect of gadolinia on phase structure and thermal conductivity of ZrO2-4.5 mol % Y2O3 ceramics. Materials Letters 62 (2008) 3524÷3526.
  • [23] Xu Z. H., He L. M., Mu R. D., He S. M., Huang G. H., Cao X. Q.: Hot corrosion behaviour of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings. Surfaces and Coating Technology 204 (2010) 3652÷366.
  • [24] Liu Z.-G., Ouyang J.-H., Zhou Y., Li S.: High-temperature hot corrosion behaviour of gadolinium zirconate by vanadium pentoxide and sodium sulfate in air. Journal of European Ceramic Society 30 (2010) 2707÷2713.
  • [25] Cao X. Q., Vassen R., Tietz F., Stöver D.: Lanthanum-cerium oxides as a thermal barrier coating material for high-temperature applications. Advanced Materials 15 (2003) 1438÷1442.
  • [26] Dai H., Zhong X. H., Li J. Y., Meng J., Cao X. Q.: Neodymium-cerium oxide as new thermal barrier coating material. Surfaces and Coating Technology 201 (2006) 2527÷2533.
  • [27] Lakiza S., Fabrichnaya O., Wang C., Zinkevich M., Aldinger F.: Phase diagram of the ZrO2-Gd2O3-Al2O3 system. Journal of European Ceramic Society 26 (2006) 233÷246.
  • [28] Liu Z.-G., Ouyang J.-H., Zhou Y., Li J.: Effect of alumina addition on the phase evolution and thermal conductivity of ZrO2-NdO1.5 ceramics. Journal of Alloys and Compounds 468 (2009) 350÷355.
  • [29] Vassen R., Dietrich M., Lehmann H., Cao X., Pracht G., Tietz F.: Development of oxide ceramics for an application as TBC. Materialwissenschaft Und Werkstofftechnik 32 (2001) 673÷677.
  • [30] Dai H., Zhong X. H., Li J. Y., Zhang Y. F., Meng J., Cao X. Q.: Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness. Materials Science and Engineering A 43 (2006) 1÷7.
  • [31] Widjaja S., Limarga A. M., Yip T. H.: Modelling of residual stresses in a plasma-sprayed zirconia/alumina functionally graded-thermal barrier coating. Thin Solid Films 434 (2003) 216÷227.
  • [32] Kuroda S., Clyne T. W.: The quenching stress in thermally sprayed coatings. Thin Solid Films 200 (1991) 49÷66.
  • [33] Ranjbar-Far M., Absi J., Mariaux G., Shahidi S.: Effect of residual stresses and prediction of possible failure mechanisms on thermal barrier coating system by finite element method. Journal of Thermal Spray Technology 19 (2010) 1054÷1061.
  • [34] Moskal G., Swadźba L., Hetmańczyk M., Witala B., Mendala B., Mendala J., Sosnowy P.: Characterization of microstructure and thermal properties of the TBC coatings type Nd2Zr2O7 and Nd2Zr2O7/YSZ. Journal of the European Ceramic Society 32 (2012) 2035÷2042.
  • [35] Moskal G., Swadźba L., Hetmańczyk M., Witala B.: Characteristics of phenomena in powders type RE2Zr2O7-Al2O3 in high temperature annealing conditions. Defect and Diffusion Forum 312-315 (2011) 583÷588.
  • [36] Chmiela B., Sozańska M., Moskal G.: Application of EBSD method for the investigation of microstructure and crystallographic orientation in RE2Zr2O7 TBC. EMAS 2011: 12 th European Workshop on Modern Developments in Microbeam, Analysis, IOP Conf. Series: Materials Science and Engineering 32 (2012) 012006.
  • [37] Moskal G.: Charakterystyka zjawisk mikrostrukturalnych w strefie tlenków TGO w powłokowych barierach cieplnych typu RE2Zr2O7. Inżynieria Materiałowa 1 (2012) 18÷23.
  • [38] Moskal G.: Degradacja powłokowych warstw barierowych TBC typu Gd2Zr2O7 w warunkach utleniania statycznego. Ochrona przed Korozją 4-5 (2011) 186÷191.
  • [39] Moskal G.: Mikrostruktura i właściwości natryskiwanych plazmowo powłokowych barier cieplnych na bazie cyrkonianu gadolinu. Wyd. Politechniki Śląskiej, Gliwice (2012).
  • [40] Moskal G.: Degradacja powłokowych warstw barierowych TBC typu DLC 8YSZ/Gd2Zr2O7. Ochrona przed Korozją 6 (2011) 363÷365.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd6c41d2-b5a8-44ab-90ff-b4f29a38a4a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.