PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the spatial structure of vegetation on the repository of the mine "Fryderyk" in Tarnowskie Góry, based on airborne laser scanning from the ISOK project and digital orthophotomaps

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Określenie struktury przestrzennej roślinności na zwałowisku kopalni “Fryderyk” w Tarnowskich Górach w oparciu o dane z lotniczego skanowania laserowego z projektu ISOK oraz cyfrowe ortofotomapy
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to determine the spatial structure of vegetation on the repository of the mine “Fryderyk” in Tarnowskie Góry. Tested area was located in the Upper Silesian Industrial Region (a large industrial region in Poland). It was a unique refuge habitat – Natura2000; PLH240008. The main aspect of this elaboration was to investigate the possible use of geotechniques and generally available geodata for mapping LULC changes and determining the spatial structure of vegetation. The presented study focuses on the analysis of a spatial structure of vegetation in the research area. This exploration was based on aerial images and orthophotomaps from 1947, 1998, 2003, 2009, 2011 and airborne laser scanning data (2011, ISOK project). Forest succession changes which occurred between 1947 and 2011 were analysed. The selected features of vegetation overgrowing spoil heap “Fryderyk” was determined. The results demonstrated a gradual succession of greenery on soil heap. In 1947, 84% of this area was covered by low vegetation. Tree expansion was proceeding in the westerly and northwest direction. In 2011 this canopy layer covered almost 50% of the research area. Parameters such as height of vegetation, crowns length and cover density were calculated by an airborne laser scanning data. These analyses indicated significant diversity in vertical and horizontal structures of vegetation. The study presents some capacities to use airborne laser scanning for an impartial evaluation of the structure of vegetation.
PL
Celem badań była ocena struktury przestrzennej roślinności porastającej zwałowisko odpadów kopalni ”Fryderyk” w Tarnowskich Górach, położone na północnym skraju Górnośląskiego Okręgu Przemysłowego. Teren, na którym znajduje się zwałowisko należy do sieci Natura 2000 (PLH 240008). Głównym aspektem poruszanym w opracowaniu było określenie możliwości wykorzystania ogólnie dostępnych geodanych dla opracowywania map pokrycia i użytkowania terenu zwałowiska oraz określenia struktury roślinności na tym obszarze. Analizowane materiały to zdjęcia i ortofotomapy lotnicze z lat: 1947, 1998, 2003, 2009, 2011 oraz dane z lotniczego skanowania laserowego (z projektu ISOK, 2011). Efektem opracowania było określenie charakterystyki przestrzennej roślinności na zwałowisku kopalni ”Fryderyk”. Analizy wykazały stopniową ekspansję roślinności na powierzchni hałdy. W 1947 roku 84% powierzchni terenu badań pokryta była przez roślinność niską a w roku 2011 roślinność wysoka zajmowała już około 50% obszaru zwałowiska. Analizy wykazały znaczne zróżnicowanie w poziomej i pionowej strukturze roślinności. W opracowaniu przedstawiono możliwości wykorzystania danych z lotniczego skanowania laserowego dla obiektywnej oceny struktury roślinności.
Rocznik
Strony
87--99
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Resources Management, Department of Forest Management, Geomatics and Forest Economics – Laboratory of Geomatics, Aleja 29 Listopada 46, 31-425 Krakow, Poland
autor
  • University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Resources Management, Department of Forest Management, Geomatics and Forest Economics – Laboratory of Geomatics, Aleja 29 Listopada 46, 31-425 Krakow, Poland
autor
  • University of Agriculture in Krakow, Faculty of Forestry Institute of Forest Ecology and Silviculture, Department of Forest Ecology and Reclamation Aleja 29 Listopada 46, 31-425 Krakow, Poland
autor
  • University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Resources Management, Department of Forest Management, Geomatics and Forest Economics – Laboratory of Geomatics, Aleja 29 Listopada 46, 31-425 Krakow, Poland
  • University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Resources Management, Department of Forest Management, Geomatics and Forest Economics – Laboratory of Geomatics, Aleja 29 Listopada 46, 31-425 Krakow, Poland
Bibliografia
  • [1] Alberti, G., Boscutti, F., Pirotti, F., Bertacco, C., De Simon, G., Sigura, M., Cazorz, F. and Bonfanti, P. (2013). A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italian case study. iForest. 6, 156-168. Doi: 10.3832/ifor0876-006.
  • [2] Andersen H. E., Reutebuch, S. E. and McGaughey, R. J. (2006). A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Canadian Journal of Remote Sensing, 32, 355-366.
  • [3] Bergen, K.M. and Dronova, I. (2007). Observing succession on aspen-dominated landscapes using a remote sensing-ecosystem approach. Landscape Ecology 22, 1395-1410.
  • [4] Coops, N. C. and White, J. D. (2003). Modeling Forest Productivity Using Data Acquired Through Remote Sensing. [In] M. A. Wulder and S. E. Franklin (eds), Remote Sensing of Forest Environments, Springer US, (pp. 411-431). DOI:10.1007/978-1-4615-0306-4_15.
  • [5] Derbis, P. (2013). Proces lasotwórczy na terenach antropogenicznych na przykładzie hałdy popłuczkowej kopalni „Fryderyk” w Tarnowskich Górach. Praca magisterska, UR Kraków.
  • [6] Drzewiecki, W., Wężyk P., Pierzchalski, M. and Szafrańska, B. (2014). Quantitative and Qualitative Assessment of Soil Erosion Risk in Małopolska (Poland), Supported by an Object-Based Analysis of High-Resolution Satellite Images. Pure Appl. Geophys., 171(6), 867-895. DOI: 10.1007/s00024-013-0669-7
  • [7] Hyyppä, J., Hyyppä, H., Litkey, P., Yu, X., Haggrén, H., Rönnholm, P., Pyysalo, U., Pitkanen, J. and Maltamo M. (2004). Algorithms and methods of airborne laser-scanning for forest measurements. Thies M., Koch B., Spiecker H. i Weinacker H. (eds.): Laser-Scanners for Forest and Landscape Assessment: Proceedings of the ISPRS Working Group VIII/2. Freiburg, Germany. International Archives of Photogrammetry, Remote Sensing, and the Spatial Information Sciences. XXXVI-8/W2.
  • [8] Lefsky, M. A., Cohen, W. B., Parker, G. G. and Harding, D. J. (2002). Lidar Remote Sensing for Ecosystem Studies. BioScience, 52/1, 19-30.
  • [9] Korpetta, D., (2010). Wprowadzenie do geomatyki leśnej. Geomatyka w Lasach Państwowych, Część I. Podstawy. Centrum Informacyjne Lasów Państwowych, Warszawa, s. 49-52.
  • [10] Lamparska-Wieland, M., (1997). Hałda pachnąca macierzanką. Wydawnictwo Krajoznawca Górnośląski, Katowice.
  • [11] Maltamo, M., Mustonen, K., Hyyppa J., PitkaNen, J. and Yu, X. (2004). The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Canadian Journal of Forest Research, 34 (9), 1791-1801.
  • [12] McGaughey, R. J. (2012). Fusion/ldv: Software for lidar data analysis and visualization. Software manual. USDA Forest Service. Pacific Northwest Research Station.
  • [13] Mcgaughey, R. J., Carson, W., Reutebuch, S. and Andersen, H.-E. (2004). Direct measurement of individual tree characteristics from lidar data. Proceedings of the Annual ASPRS Conference. Denver. American Society of Photogrammetry and Remote Sensing.
  • [14] Næsset, E. and Økland, T. (2002). Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment, 79, 105-115.
  • [15] Næsset, E., (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80, 80-99.
  • [16] Pirotti, F. (2011). Analysis of full-waveform LiDAR data for forestry applications: a review of investigations and methods. iForest, 4: 100-106. DOI: 10.3832/ifor0562-004.
  • [17] Singh, K., Vogler, J., Shoemaker, D. and Meentemeyer, R. (2012). LiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume, and mapping accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 74, 110-121.
  • [18] Smreček, R. and Danihelová, Z. (2013). Forest stand height determination from low point density airborne laser scanning data in Roznava Forest enterprise zone (Slovakia). iForest, 6, 48-54. DOI: 10.3832/ifor0767-006.
  • [19] Suzanchi, K. and Kaur, R., (2011). Land use land cover change in National Capital Region of India: A remote sensing & GIS-based two decadal spatial-temporal analyses. Procedia – Social and Behavioral Sciences, 21, 212-221.
  • [20] Szostak, M., Wężyk, P. and Tompalski, P. (2014). Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland). Pure and Applied Geophysics, 171 (2014), 6, 857-866, DOI: 10.1007/s00024-013-0668-8.
  • [21] Talarczyk, A. and Neroj, B. (2010). Źródła danych dla systemu informacji przestrzennej. Geomatyka w Lasach Państwowych. Centrum Informacyjne Lasów Państwowych, Warszawa, s. 113-129.
  • [22] Tompalski, P. (2012). The use of 3D spatial indices for urban vegetation analysis based on airborne laser scanning data. Archives of Photogrammetry, Cartography and Remote Sensing, 23, 443-456.
  • [23] Wężyk, P., (2008). Modeling of the point cloud from laser scans in tree crowns. Archives of Photogrammetry, Cartography and Remote Sensing, 18, 685-695.
  • [24] Wężyk, P. and de Kok, R. (2005). Automatic mapping of the dynamics of forest succession on abandoned parcels in south Poland. In: Strobl et al. (Eds.) Angewandte Geoinformatik 2005. Herbert Wichman Verlag. Heidelberg: 774-779, ISBN 3-87907-244-4.
  • [25] Wężyk, P, Szostak, M. and Tompalski, P. (2013). Use of Airborne Laser Scanning Data for a Revision and Update of a Digital Forest Map and its Descriptive Database: A Case Study from the Tatra National Park. The Carpathians: Integrating Nature and Society Towards Sustainability, Part IV, pp. 615–627, Springer Berlin Heidelberg, DOI: 10.1007/978-3-642-12725-0_43.
  • [26] Wężyk, P., Tompalski, P., Szostak, M., Glista, M. and Pierzchalski, M. (2008). Describing the selected canopy layer parameters of the Scots pine stands using ALS data. 8th international conference on LiDAR applications in forest assessment and inventory. SiliviLaser 2008, Edinburgh, s. 636-645.
  • [27] Yu, X., Hyyppa J., Kaartinen, H. and Maltamo, M. (2004). Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sensing of Environment Vol: 90 (4), 451-462.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd62a378-2829-4ede-a9f9-db7727bdb9a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.