PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Contemporary seismic moment budget along the Nepal Himalaya derived from high-resolution InSAR and GPS velocity field

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Throughout history, several large-magnitude earthquakes have caused damage to the Himalayan region and humanity. To understand the present-day strain rate distribution and associated seismic moment budget, a high-resolution velocity field is an essential component. The present study estimates the contemporary seismic moment budget along three spatial sections over the Nepal Himalaya using the state-of-the-art high-resolution velocity field. For this, (1) we integrate 5 years of InSAR data with 77 available GPS observations over the Nepal Himalaya; (2) we then calculate strain rate distribution (dilatational and maximum shear strain rates) from this integrated velocity field, and (3) at last, we compare the geodetic moment accumulation rate estimated from strain rate tensors with the seismic moment release rate based on an earthquake database of 500 years. The results reveal that: (1) the geodetic strain rate is not homogeneous over the Nepal Himalaya, rather along the main central thrust, a relatively higher strain rate is observed; (2) the geodetic moment rate from west to east across three sections ranges from 23.39 X 1018 to 16.59 X 1018 Nm/yr, with the minimum of 8.05 X 1018 Nm/yr in central Nepal, whereas the seismic moment rate varies between 5.02 X 1018 and 11.41 X 1018 Nm/yr, with the minimum of 3.69 X 1018 Nm/yr in central Nepal; (3) the difference between geodetic and seismic moment rates from west to east provides a moment deficit rate of 18.37 X 1018 to 5.18 X 1018 Nm/yr, with the minimum of 4.36 X 1018 Nm/yr in central Nepal, and more importantly, (4) the inferred moment deficit rate suggests that the western and eastern Nepal have an earthquake potential of magnitude Mw 8.5 and Mw 8.1, respectively, whereas the central Nepal has energy budget equivalent to an Mw 7.9 event. In summary, the present study provides spatial distribution of earthquake potential in Nepal Himalaya using the most updated high-resolution InSAR and GPS velocity field, and the findings inevitably contribute to the time-dependent earthquake hazard analysis of the study region.
Czasopismo
Rocznik
Strony
171--186
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
  • Department of Mathematics, Birla Institute of Technology and Science, Pilani, India
  • Department of Geomatics, National Cheng Kung University, Tainan City, Taiwan
autor
  • Department of Geomatics, National Cheng Kung University, Tainan City, Taiwan
  • Department of Mathematics, Birla Institute of Technology and Science, Pilani, India
Bibliografia
  • 1. Ader T, Avouac JP, Liu-Zeng J et al (2012) Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: implications for seismic hazard. J Geophys Res Solid Earth 117:B04403
  • 2. Allmendinger RW, Reilinger R, Loveless J (2007) Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics 26:TC3013
  • 3. Ambraseys N, Douglas J (2004) Magnitude calibration of north Indian earthquakes. Geophys J Int 159:165-206
  • 4. Ansari K (2018) Crustal deformation and strain analysis in Nepal from GPS time-series measurement and modeling by ARMA method. Int J Earth Sci 107:2895-2905
  • 5. Banerjee P, Burgmann R (2002) Convergence across the north west Himalaya from GPS measurements. Geophys Res Lett 29:30-1
  • 6. Banerjee P, Burgmann R, Nagarajan B, Apel E (2008) Intraplate deformation of the Indian subcontinent. Geophys Res Lett 35:L18301
  • 7. Berger A, Jouanne F, Hassani R, Mugnier JL (2004) Modelling the spatial distribution of present-day deformation in Nepal: how cylindrical is the Main Himalayan Thrust in Nepal? Geophys J Int 156:94-114
  • 8. Bettinelli P, Avouac JP, Flouzat M, Jouanne F, Bollinger L, Willis P, Chitrakar GR (2006) Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. J Geod 80:567-589
  • 9. Bilham R (2019) Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geol Soc Lond Mem 483:423-482
  • 10. Bilham R, Gaur VK (2013) Buildings as weapons of mass destruction. Science 341:618-619
  • 11. Bilham R, Szeliga W (2008) Interaction between the Himalaya and the flexed Indian plate-spatial fluctuations in seismic hazard in India in the past millennium? In: AIP Conference Proceedings, vol 1020. pp 224-231
  • 12. Bilham R, Larson K, Freymueller J (1997) GPS measurements of present day convergence across the Nepal Himalaya. Nature 386:61-64
  • 13. Bilham R, Gaur VK, Molnar P (2001) Himalayan seismic hazard. Sci¬ence 293:1442-1444
  • 14. Billiris H, Paradissis D, Veis G et al (1991) Geodetic determination of tectonic deformation in central Greece from 1900 to 1988. Nature 350:124-129
  • 15. Bird P, Kagan YY (2004) Plate-tectonic analysis of shallow seismicity: apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bull Seismol Soc Am 94:2380-2399
  • 16. Bisht H, Kotlia BS, Kumar K, Dumka RK, Taloor AK, Upadhyay R (2021) GPS derived crustal velocity, tectonic deformation and strain in the Indian Himalayan arc. Quat Int 575:141-152
  • 17. Blewitt G, Kreemer C, Hammond WC, Gazeaux J (2016) MIDAS robust trend estimator for accurate GPS station velocities with- out step detection. J Geophys Res Solid Earth 121:2054-2068
  • 18. Bock Y, Melgar D (2016) Physical applications of GPS geodesy: a review. Rep Prog Phys 79:106801
  • 19. Bollinger L, Tapponnier P, Sapkota S, Klinger Y (2016) Slip deficit in central Nepal: Omen for a repeat of the 1344 AD earthquake? Earth Planets Space 68:1-12
  • 20. Bungum H, Lindholm CD, Mahajan AK (2017) Earthquake recurrence in NW and central Himalaya. J Asian Earth Sci 138:25-37
  • 21. Champenois J, Fruneau B, Pathier E, Deffontaines B, Lin KC, Hu JC (2012) Monitoring of active tectonic deformations in the Longitudinal Valley (Eastern Taiwan) using Persistent Scatterer
  • 22. InSAR method with ALOS PALSAR data. Earth Planet Sci Lett 337:144-155
  • 23. Ching KE, Rau RJ, Johnson KM, Lee JC, Hu JC (2011) Present day kinematics of active mountain building in Taiwan from GPS observations during 1995-2005. J Geophys Res Solid Earth 116:B09405
  • 24. Ching KE, Gourley JR, Lee YH, Hsu SC, Chen KH, Chen CL (2016) Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectono- physics 692:241-251
  • 25. Chousianitis K, Ganas A, Evangelidis CP (2015) Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release. J Geophys Res Solid Earth 120:3909-3931
  • 26. Dal Zilio L, van Dinther Y, Gerya T, Avouac JP (2019) Bimodal seismicity in the Himalaya controlled by fault friction and geometry. Nat Commun 10:1-11
  • 27. Desbrun M, Meyer M, Schroder P, Barr AH (1999) Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques. pp 317-324
  • 28. Doin MP, Guillaso S, Jolivet R, Lasserre C, Lodge F, Ducret G, Gran- din R (2011) Presentation of the small baseline NSBAS processing chain on a case example: the Etna deformation monitoring from 2003 to 2010 using Envisat data. In: Proceedings of the fringe symposium. pp 3434-3437
  • 29. Dumka RK, Kotlia BS, Kumar K, Satyal GS, Joshi LM (2014) Crustal deformation revealed by GPS in Kumaun Himalaya, India. J Mt Sci 11:41-50
  • 30. Dumka RK, Kotlia BS, Kothyari GC, Paikrey J, Dimri S (2018) Detec- tion of high and moderate crustal strain zones in Uttarakhand Himalaya, India. Acta Geophys 53:503-521
  • 31. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54-75
  • 32. England P, Molnar P (1997) Active deformation of Asia: from kinematics to dynamics. Science 278:647-650
  • 33. Gansser A (1964) Geology of the Himalayas. Interscience, London
  • 34. Garthwaite MC, Wang H, Wright TJ (2013) Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR. J Geophys Res Solid Earth 118:5071-5083
  • 35. Gens R, Van Genderen JL (1996) Review article SAR interferometry— issues, techniques, applications. Int J Remote Sens 17:1803-1835
  • 36. Gunawan E, Widiyantoro S (2019) Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate. J Geodyn 123:49-54
  • 37. Gupta H, Gahalaut V (2015) Can an earthquake of Mw ~ 9 occur in the Himalayan region? Geol Soc Spec Publ 412:43-53
  • 38. Hammond WC, Thatcher W (2004) Contemporary tectonic deformation of the basin and range province, western United States: 10 years of observation with the Global Positioning System. J Geophys Res Solid Earth 109:B08403
  • 39. Hammond WC, Thatcher W (2005) Northwest basin and range tec- tonic deformation observed with the Global Positioning System, 1999-2003. J Geophys Res Solid Earth 110:B10405
  • 40. Holt W, Chamot-Rooke N, Le Pichon X, Haines A, Shen-Tu B, Ren J (2000) Velocity field in Asia inferred from quarternary fault slip rates and Global Positioning System observations. J Geophys Res 105:19-185
  • 41. Hong S, Liu M (2021) Postseismic deformation and afterslip evolution of the 2015 Gorkha earthquake constrained by InSAR and GPS observations. Geophys Res Solid Earth 126:e2020JB020230
  • 42. Hsu YJ, Yu SB, Simons M, Kuo LC, Chen HY (2009) Interseismic crustal deformation in the Taiwan plate boundary zone revealed
  • 43. by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics 479:4-18
  • 44. Hussain E, Wright TJ, Walters RJ, Bekaert DP, Lloyd R, Hooper A (2018) Constant strain accumulation rate between major earth- quakes on the North Anatolian Fault. Nat Commun 9:1-9
  • 45. Jade S, Mukul M, Gaur VK, Kumar K et al (2014) Contemporary deformation in the Kashmir-Himachal, Garhwal and Kumaon Himalaya: significant insights from 1995-2008 GPS time series. J Geod 88:539-557
  • 46. Jade S, Shrungeshwara T, Kumar K, Choudhury P, Dumka RK, Bhu H (2017) India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015. Sci Rep 7:1-16
  • 47. Jiracek GR, Gonzalez VM, Caldwell TG, Wannamaker PE, Kilb D (2007) Seismogenic, electrically conductive, and fluid zones at continental plate boundaries in New Zealand, Himalaya, and California, USA. Geophys Monogr Ser 175:347
  • 48. Jouanne F, Mugnier J, Pandey M, Gamond J, Le Fort P, Serrurier L, Vigny C, Avouac J (1999) Oblique convergence in the Himalayas of western Nepal deduced from preliminary results of GPS measurements. Geophys Res Lett 26:1933-1936
  • 49. Jouanne F, Mugnier JL, Gamond J, Le Fort P, Pandey M, Bollinger L, Flouzat M, Avouac JP (2004) Current shortening across the Himalayas of Nepal. Geophys J Int 157:1-14
  • 50. Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981-2987
  • 51. Kayal J (2008) Microearthquake seismology and seismotectonics of South Asia. Springer, Dordrecht
  • 52. Khattri K (1987) Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary. Tectono- physics 138:79-92
  • 53. Khattri K, Tyagi A (1983) Seismicity patterns in the Himalayan plate boundary and identification of the areas of high seismic potential. Tectonophysics 96:281-297
  • 54. Kreemer C, Blewitt G, Klein EC (2014) A geodetic plate motion and Global Strain Rate model. Geochem Geophys 15:3849-3889
  • 55. Larson KM, Burgmann R, Bilham R, Freymueller JT (1999) Kinematics of the India-Eurasia collision zone from GPS measurements. Geophys Res Solid Earth 104:1077-1093
  • 56. Lave J, Avouac JP (2000) Active folding of fluvial terraces across the Siwaliks hills, Himalayas of central Nepal. Geophys Res Solid Earth 105:5735-5770
  • 57. Lave J, Yule D, Sapkota S, Basant K, Madden C, Attal M, Pandey R (2005) Evidence for a great medieval earthquake ( ~ 1100 AD) in the central Himalayas, Nepal. Science 307:1302-1305
  • 58. Lazecky M, Spaans K, Gonzalez PJ et al (2020) LiCSAR: an automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sens 12:2430
  • 59. Le Fort P (1975) Himalayas: the collided range. Present knowledge of the continental arc. Am J Sci 275:1-44
  • 60. Li Z, Ren J, Qin S (2017) Contemporary kinematic models and moment deficit of Chinese mainland. Geod Geodyn 8:181-186
  • 61. Li S, Wang Q, Yang S, Qiao X, Nie Z, Zou R, Ding K, He P, Chen G (2018) Geodetic imaging mega-thrust coupling beneath the Himalaya. Tectonophysics 747:225-238
  • 62. Li S, Tao T, Gao F, Qu X, Zhu Y, Huang J, Wang Q (2020) Interseismic coupling beneath the Sikkim-Bhutan Himalaya constrained by GPS measurements and its implication for strain segmentation and seismic activity. Remote Sens 12:2202
  • 63. Lindsey EO, Almeida R, Mallick R, Hubbard J, Bradley K, Tsang LL, Liu Y, Burgmann R, Hill EM (2018) Structural control on downdip locking extent of the Himalayan megathrust. J Geophys Res Solid Earth 123:5265-5278
  • 64. Lopez-Quiroz P, Doin MP, Tupin F, Briole P, Nicolas JM (2009) Time series analysis of Mexico city subsidence constrained by radar interferometry. Appl Geophys 69:1-15
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd5dcbac-2ece-44c4-aeff-d0227c6c83b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.