PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical model and an analysis of inertial accumulator operation under selected working conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper was to create a computational model that will enable the evaluation of the operation of a conventional inertia accumulator. This is an issue that is relevant as storage of energy is becoming increasingly important, in particular when it comes to generating electricity from renewable sources. In the course of the conducted works, an analytical model was developed based on the available literature, and then, it was introduced into the environment for numerical calculations. Four variants resulting from different geometrical parameters of the flywheel were adopted successively. On this basis, a series of simulations were performed, which allowed for obtaining the characteristics of the analysed solutions. As a consequence, a number of characteristics related to the mechanical power and energy of the simulated kinetic energy accumulators were obtained. The test results therefore provide a basis for comparing kinetic energy accumulators with different geometries and drive solutions.
Rocznik
Strony
286--291
Opis fizyczny
Bibliogr. 21 poz., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
Bibliografia
  • 1. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y. Progress in electri-cal energy storage system: A critical review. Prog Nat Sci. 2009;19:291–312.
  • 2. Kåberger T. Progress of renewable electricity replacing fossil fuels. Global Energy Interconnection. 2018;1:48–52.
  • 3. Moriarty P, Honnery D. Can renewable energy power the future? E Policy, 2016;93:3–7.
  • 4. Medina P, Bizuayehu AW, Catalao JPS, Rodrigues EMG, Contreras J. Electrical Energy Storage Systems: Technologies’ State-of-the-Art, Techno-economic Benefits and Applications Analysis. Proc of the 47th Hawaii Int Conf on Syst Sci; 2014 Jan 6–9; Waikoloa, HI, USA, 2014;2295–2304.
  • 5. Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energy storage technologies for electric power applications. Renew Sust Energ Rev. 2009;13:1513–1522.
  • 6. Del Granado PC, Wallace SW, Pang Z/The value of electricity stor-age in domestic homes: A smart grid perspective. E Systems, 2014;5:211–232.
  • 7. Amiryar ME, Pullen KR, A Review of Flywheel Energy Storage Sys-tem Technologies and Their Applications. Appl Sci, 2017;7(3):286, 1-22.
  • 8. Skinner M. Characterization of Passibe Sischarge Losses in a Fly-wheel Energy Storage System [Masters’s Thesis], Edmonton, (AB, Canada): University of Alberta; 2017.
  • 9. Luo X, Wang J, Dooner M, Clarke J. Overview of current develop-ment in electrical energy storage technologies and the application potential in power system operation. Appl E. 2015;137:511–536.
  • 10. Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energy storage technologies for electric power applications. Renew Sust Energ Rev., 2009;13,1513–1522.
  • 11. Skinner M, Mertiny P. Energy Storage Flywheel Rotors – Mechanical Design, Ency, 2022;2(1):301–324.
  • 12. Bolund B, Bernhoff H, Leijon M, Flywheel energy and power storage systems, Renew Sust Energ Rev., 2007;11(2):235–258.
  • 13. Łyskojć D, Duer S, Zajkowski K, Sokołowski S. Możliwości zwiększe-nia zasięgu pojazdu z napędem elektrycznym przy wykorzystaniu niekonwencjonalnych rozwiązań technicznych (English title.: The abi-lity to increase the range of electric vehicle using unconventional technical solutions), Autobusy Technika, Eksploatacja, Systemy Transportowe, 2012;12(5):273–278.
  • 14. Jansen RH, Dever TP. G2 Flywheel Module Design, NASA Technical Reports Server [Internet]. 2006, NASA/CR-2006-213862 [cited 22 May 2022]. Available from: http://large.stanford.edu/courses/2020/ph240/barnett2/docs/nasa-aug06.pdf
  • 15. Ferrofluidowe koło zamachowe (English: Ferrofluid flywheel), KRAKsat, [Internet]. KrakSat [cited 16 Dec 2019]. Available from: https://www.kraksat.pl/space/ferrofluidowe-kolo-zamachowe/
  • 16. Shah H. Volvo Flywheel KERS offers 25% improved economy [Inter-net]. 2013, article for paultan.org, [cited 16 Dec 2019]. Available from: https://paultan.org/2013/05/01/volvo-flywheel-kers-offers-25-improved-economy/
  • 17. Chase C. Volvo Refreshes 2020 XC90 With Energy Recovery Brak-ing System [Internet]. 2019, article for autotrader.ca, [cited 16 Dec 2019]. Available from: https://www.autotrader.ca/newsfeatures/ 20190222/volvo-refreshes-2020-xc90-with-energy- recovery-braking-system
  • 18. Merksiz J, Pielecha I. Układy mechaniczne pojazdów hybrydowych (Engilsh title: Mechanical systems of hybrid vehicles). Poznań: Pub-lishing house of Poznań University of Technology, Poznań; 2015.
  • 19. Złoty P., Od koła garncarskiego do systemu KERS (English title: From the potter's wheel to theKERS system [Internet]. 2013, article for gazeo.pl, [cited 16 Dec 2019]. Available from: https://gazeo.pl/samochody-hybrydowe-elektryczne/samochody-hybrydowe/Od-kola-garncarskiego-do-systemuKERS,artykul,6798.html
  • 20. PawelskI Z, Maciejczyk A, Wróbel T. Prototype of Electric Bus of AMZ Kutno, J KONES Powertrain and Trans, 2014;21(1):197–204.
  • 21. Szumanowski A., Akumulacja energii w pojazdach (English title: Accumulation of energy in vehicles), Warsaw: Publishing House of Communication and Connectivity, 1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd59c170-452f-4e27-a1d7-77d7202d69ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.