PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer Simulation of Cast Iron Flow in Castability Trials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper includes validation studies of the flow module of the NovaFlow&Solid simulation code. Experiments of ductile iron and gray iron casting in a spiral test of castability were carried out. Casting experiments were then carried out in industrial conditions in the Ferrex Foundry in Poznań and the results are the castability spiral length and local cast iron rate during mould cavity pouring. Simulation tests using NovaFlow&Solid Control Volume code were made. The technological castability test was used to determine thermal-physical data through simplified inversion problem. Influence of physical parameters in the database of simulation code on the spiral length obtained as the result of simulation was analyzed. It was found that critical fraction of capillary flow CLF down has the biggest impact on cast iron castability in the simulation code. The simulations resulted in defining parameters of gray iron GJL 250 and ductile iron GJS-400-15. For the parameters set, the length of castability spiral in simulations was in accordance with casting experiments.
Twórcy
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management, 3 Piotrowo Str., 61-138 Poznań, Poland
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management, 3 Piotrowo Str., 61-138 Poznań, Poland
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management, 3 Piotrowo Str., 61-138 Poznań, Poland
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management, 3 Piotrowo Str., 61-138 Poznań, Poland
Bibliografia
  • [1] J. Sobczak, E. Balcer, A. Kryczek, Situation of the foundry engineering in Poland and in the world - the current state and predictions, Przegląd Odlewnictwa 2012, nr 1-2 (2012).
  • [2] Census of World Casting Production. Global casting Production Growth Stalls, Modern Casting Dec/2017 (2017).
  • [3] Report CAEF, The European Foundry Association (2017)
  • [4] Z. Ignaszak, P. Mikołajczak, P. Popielarski, The specificity and examples of on-line validation methods for systems forecasting the quality of industrial castings, Innowacje w odlewnictwie część III, Instytut Odlewnictwa, aneks xi (in Polish) (2010).
  • [5] S. Shamasundar, "To believe or not to believe” Results of casting simulation software. Alucast, International conference, Technical 2012, December 2012.
  • [6] Z. Ignaszak, P. Popielarski, J. Hajkowski, Sensitivity of models applied in selected simulation systems with respect to database quality for resolving of casting problems, Defect and Diffusion Forum 336, 135-146 (2013), DOI:10.4028/www.scientific.net/DDF.336.135
  • [7] Z. Ignaszak, Virtual Prototyping in Foundry. Database and validation. Poznań. Wydawnictwo Politechniki Poznańskiej, (in Polish) (2002).
  • [8] B. Ravi, Computer-aided Casting Design and Simulation, STTP, V.N.I.T. Nagpur (2009).
  • [9] M. Jolly, Casting simulation: How well do reality and virtual casting match? State of art. Review. Int. J. Cast Metals Res. 14, 303-313 (2002).
  • [10] B. Ravi, Casting Simulation - Best Practices, Transactions of 58th IFC, Ahmedabad (2010).
  • [11] K. S. Chan, K. Pericleous, M. Cross, Numerical simulation of flows encountered during mold-filling, Applied Mathematical Modelling 15, 11-12, 624-631 (1991).
  • [12] B. Liu, W. Qiu, H. Shen, Z. Gao, Study and application of mold filling simulation of shaped castings, J. Mater. Sci. Techno. 13 (1997).
  • [13] A. Bokota, L. Sowa, A numerical simulation of the vertical fluidity test, Archives of Foundry 2, 4, 68-73 (2002).
  • [14] Y. B. Li, W. Zhou, Numerical Simulation of Filling Process in Die Casting, Materials Technology 18, 1, 36-41 (2003).
  • [15] L. Sowa, A. Bokota, Numerical modelling of thermal and fluid flow phenomena in the mould channel, Archives of Foundry Engineering 7, 4, 165-168 (2007).
  • [16] M. M. Pariona, G. A. Salem, F. Bertelli, N. Cheung, Numerical simulation for prediction of filling process in a sand mould, Rev. LatinAm. Metal. Mater. 28, 2, Caracas (2008).
  • [17] T. Pacyniak, R. Kaczorowski, Modeling of mould cavity filling process with cast iron in Lost Foam method Part 2. Mathematical model - Pouring rate, Archives of Foundry Engineering 8, Special Issue 3, 75-78 (2008).
  • [18] R. T. Patil, V. S. Metri, S. S. Tambore, Analysis and Simulation of Die Filling in Gravity Die Casting using MAGMA Software, International Journal of Engineering Research & Technology (IJERT) 4, 11 (2015).
  • [19] J. Jakumeit, H. Behnken, F. Schmidt, J. Ganz, B. Thorwald, Simulation o fair Entraiment In high pressure die casting applications, CFD Modeling and simulation In materiale processing, TMS (2016).
  • [20] Z. Pirowski, S. Pysz, Computer simulation of castability trials, Journal of Research and Applications in Agricultural Engineering 1, 151-156 (2013).
  • [21] BN-79/4051-17 - Polish Industy Standard: Technological castability trial for alloys.
  • [22] Patent no P.415693, System for measuring a time or rate of filling up of a foundry mould cavity, (2018).
  • [23] P. Popielarski, Z. Ignaszak, Effective Modelling of Phenomena in Over-Moisture Zone Existing in Porous Sand Mould Subjected to Thermal Shock, in: J.M.P.Q. Delgado A. Gilson Barbosa de Lima, Advanced Structured Materials, Drying and Energy Technologies, Springer, New York 181-206 (2016), DOI: 10.1007/978-3-319-19767-8_10.
Uwagi
EN
The research was supported by 02/25/SBAD/4630 project realized at Poznan University of Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd53cc2b-2927-4e60-acbb-218bfd560ee6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.