PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photoacoustic Method as a Tool for Analysis of Concentration-Dependent Thermal Effusivity in a Mixture of Methyl Alcohol and Water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has been shown in the present paper that exploitation of the experimental potential of a photoacoustic technique can provide information on a type of intermolecular interactions in aqueous mixtures containing organic liquids, when the basic parameters of these mixtures, such as density, ρ, specific heat, cp, or thermal conductivity, λ, are unknown. Earlier investigations of concentration dependence of effusivity in different aqueous solutions of organic liquids demonstrated that the photoacoustics method is a sensitive tool to identify hydrophobic properties of such liquids. In our experiment this suggestion was exploited for a solution of methanol which is known to display much weaker hydrophobicity than other alcohols. It was confirmed that the location of extreme deviations from linearity for the thermal effusivity, Δe, agrees well with that of characteristic points for the isentropic compressibility coefficient, κS, and the excess molar volume, VEm , as a function of the concentration.
Rocznik
Strony
153--160
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Institute of Experimental Physics, University of Gdańsk, Gdańsk, Poland
  • Institute of Experimental Physics, University of Gdańsk, Gdańsk, Poland
  • Institute of Experimental Physics, University of Gdańsk, Gdańsk, Poland
  • Institute of Experimental Physics, University of Gdańsk, Gdańsk, Poland
  • Institute of Acoustics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-612 Poznań, Poland
  • National University of Science and Technology “MISIS”, 119049 Moscow, Russia
  • National University of Science and Technology “MISIS”, 119049 Moscow, Russia
  • Department of Physics, Tver State University, 170100 Tver, Russia
Bibliografia
  • 1. Almond D. P., Patel P. M. (1996), Photothermal science and techniques, Chapman & Hall, London.
  • 2. Assael M. J., Charitidou E., Wakeham W. A. (1989), Absolute measurements of the thermal conductivity of mixtures of alcohols with water, International Journal of Thermophysics, 10, 4, 793-803, http://doi.org/10.1007/BF00514476.
  • 3. Balderas-Lopez A., Gutierrez-Juarez G., Jaime-Fonseca M. R., Sanchez-Sinencio F. (1999), Measurements of thermal effusivity of liquids using a conventional photoacoustic cell, Review of Scientific Instruments, 70, 2069-2071, http://doi.org/10.1063/1.1149713.
  • 4. Benson G. C., D’Arcy P. J., Kiyohara O. (1980), Thermodynamics of aqueous mixtures of nonelectrolytes II. Isobaric heat capacities of water n-alcohol mixtures, Journal of Solution Chemistry, 9, 12, 931-938, http://doi.org/10.1007/BF00646404.
  • 5. Bicanic D. D., Neamtu C., Manjlović M., van deer Linden D., Dadarlat D., Posavec K., Gijsbersten A., Kurtanjek Z. (2004), Tomato pastes and their moisture content as determined via the measurements of thermal effusivity by means of infrared photothermal radiometry and inverse photopyroelectric technique, Acta Chimica Slovenica, 51, 39-46.
  • 6. Dadarlat D., Pop N. M. (2012), Self-consistent photopyroelectric calorimetry for liquids, International Journal of Thermophysics, 56, 19-22, http://doi.org/10.1016/j.ijthermalsci.2012.01.015.
  • 7. Dadarlat D., Streza M., Pop N. M., Tosa V. (2009), On the sensitivity of FPPE-TWRC method in thermal effusivity investigations in solids, Journal of Physics: Conference Series, 182, 1, 012023, http://doi:10.1088/1742-6596/182/1/012023.
  • 8. Dixit S., Crain J., Poon W. C., Finney J. L., Soper A. K. (2002), Molecular segregation observed in a concentrated alcohol-water solution, Nature, 416, 829-832, http://doi:10.1038/416829a.
  • 9. Ernst S., Gliński J. (1977), Clathrate models and the compressibility of the water dioxane and water dioxane KCl systems, Materials Science, III, 3, 69-74.
  • 10. Favro L. D., Kuo P. K., Thomas R. L. (1987), Thermal wave techniques for imaging and characterization of materials, [in:] Thompson D. O., Chimenti D. E. [Eds.] Review of progress in quantitative nondestructive evaluation, Vol. 6A, pp. 293-299, Springer, Boston, MA, doi: 10.1007/978-1-4613-1893-4_34.
  • 11. Frank H. S., Evans M. W. (1945), Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and dynamics in aqueous electrolytes, The Journal of Chemical Physics, 13, 507-532, https://doi.org/10.1063/1.1723985.
  • 12. Franks F. (2000), Water: a matrix of life, The Royal Society of Chemistry, Thomas Graham House, Cambridge.
  • 13. Hartikainen J., Jaarinen J., Luukkala M. (1991), Microscopic thermal wave non-distructive testing, Advances in Optical and Electron Microscopy, 12, 313-359, https://doi.org/10.1016/B978-0-12-029912-6.50010-5.
  • 14. Jerie K., Baranowski A., Ernst S., Glinski J. (1986), Positron annihilation in and compressibility of water-organic mixtures IV. The system water – ethanol, Acta Physica Polonica A., 69, 81-90.
  • 15. Linde B. B. J. (1997), Acoustical spectroscopy of cyclic & heterocyclic compounds, ketones and polluted water surface, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk.
  • 16. Linde B. B. J., Lezhnev N. B. (2000), Extended frequency range measurements for determining the Kneser-type acoustic relaxation time, Ultrasonics, 38, 10, 945-951, http://doi.org/10.1016/S0041-624X(00)00024-X.
  • 17. Linde B. B. J., Skrodzka E. B., Lezhnev N. B. (2012), Vibrational relaxation in several derivatives of benzene, International Journal of Thermophysics, 33, 4, 664-679, htpps://doi.org/10.1007/s10765-012-1165-5.
  • 18. Łabowski M., Skrodzka E. (1989), Theoretical and experimental evaluations of the electric field effect on the ultrasonic wave velocity in carbon tetrachloride, Acustica, 68, 1, 26-32.
  • 19. Marcus Y. (2011), Water structure enhancement in water-rich binary solvent mixtures, Journal of Molecular Liquids, 158, 1, 23-26, http://doi.org/10.1016/j.molliq.2010.10.002.
  • 20. Marczak W., Spurek M. (2004), Compressibility and volume effects of mixing of 1-propanol with heavy water, Journal of Solution Chemistry, 33, 2, 99-116, http://doi.org/10.1023/B:JOSL.0000030278.21608.a1.
  • 21. Pandey J. D., Mishra R. K. (2005), Theoretical evaluation of thermal conductivity and diffusion coefficient of binary liquid mixture, Physics and Chemistry of Liquids, 43, 1, 49-57, http://doi.org/10.1080/0031910042000303554.
  • 22. Rosencwaig A. (1988), Photoacoustics and photoacoustic spectroscopy, Wiley & Sons, New York.
  • 23. Rosencwaig A., Gersho A. (1976), Theory of the photoacoustic effects with solids, Journal of Applied Physics, 47, 64-69, http://doi.org/10.1063/1.322296.
  • 24. Sato T., Buchner R. (2005), Cooperative and molecular dynamics of alcohol/water mixtures: the view of dielectric spectroscopy, Journal of Molecular Liquids, 117, 1-3, 23-31, http://doi.org/10.1016/j.molliq.2004.08.015.
  • 25. Shi Z., Wei S., Ford J. V., Castleman A. W., Jr (1992), Clathrate structures in water-methanol mixed clusters, Chemical Physics Letters, 200, 1-2, 142-146, https://doi.org/10.1016/0009-2614(92)87059-X.
  • 26. Sikorska A., Dadarlat D., Linde B. B. J., Streza M., Neamtu C., Śliwiński A. (2006), Photoacoustic and photopyroelectric investigations of thermal parameters in water mixed with organic liquids, Journal de Physique IV, 137, 341-345, http://doi.org/10.1051/jp4:2006137065.
  • 27. Sikorska A., Linde B. B. J. (2008), Manifestation of hydration effects in dioxane-water solutions by concentration-dependent changes of thermal and elastic properties, Chemical Physics, 354, 1-3, 148-154, http://doi.org/10.1016/j.chemphys.2008.09.010.
  • 28. Sikorska A., Linde B. B. J., Kukielski J. J. (2001), The effect of solvent polarity on photo-acoustic spectra of alkyl-cyanobiphenyl derivatives, Journal of Optics A: Pure and Applied Optics, 3, 4, S71-S76, http://doi.org/10.1088/1464-4258/3/4/362.
  • 29. Sikorska A., Linde B. (2003), Determination of thermal effusivity ofliquids by use of open photoacoustic cell and front excitation configuration, Journal de Physique IV France, 109, 99-104, doi: 10.1051/jp4:20030657.
  • 30. Sikorska A., Linde B. B. J, Zwirbla W. (2005), Study of thermal effusivity variations in water solutions of polyethylene glycol 200 using photoacoustic method, Chemical Physics, 320, 1, 31-36, http://doi.org/10.1016/j.chemphys.2005.06.024.
  • 31. Sikorska A., Ponikwicki N., Koniecko A., Linde B. B. J. (2010), Comparative studies of the mixing effect on the thermal effusivity, compressibility and molar volume for aqueous solutions of alcohols, International Journal of Thermophysics, 31, 1, 131-142, http://doi.org/10.1007/s10765-009-0639-6.
  • 32. Soper A. K., Dougan L., Crain J., Finney J. L. (2006), Excess entropy in alcohol-water solutions: A simple clustering explanation, Journal of Physical Chemistry B, 110, 8, 3472-3476, http://doi:10.1021/jp054556q.
  • 33. Turgut A., Sauter C., Chirtoc M., Henry J. F., Tavman S., Tavman I., Pelzl J. (2008), A.C. hot wire measurement of thermophysical properties of nanofluids with 3 method, The European Physical Journal Special Topics, 153, 1, 349-352, http://doi.org/10.1140/epjst/e2008-00459-7.
  • 34. Wakisaka A., Matsuura K. (2006), Microheterogeneity of ethanol-water binary mixtures observed at the cluster level, Journal of Molecular Liquids, 129, 1, 25-32, doi: 10.1016/j.molliq.2006.08.010.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd522ffd-ea00-4dc8-82e4-85de46df1707
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.