PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Suspended sediment discharge modeling during flood events using two different artificial neural network algorithms

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents modeling of artificial neural network (ANN) to forecast the suspended sediment discharges (SSD) during flood events in two different catchments in the Seybouse basin, northeastern Algeria. This study was carried out on hourly SSD and water discharge data during flood events from a period of 31 years in the Ressoul catchment and of 28 years in the Mellah catchment. The ANNs were trained according to two different algorithms: the Levenberg–Marquardt algorithm (LM) and the Quasi-Newton algorithm (BFGS). Seven input combinations were trained for the SSD prediction. The performance results indicated that both algorithms provided satisfactory simulations according to the determination coefficient (R2) and root mean squared error (RMSE) performance criteria, with priority to the BFGS algorithm; the coefficient of determination using the LM algorithm varies between 51.0 and 90.2%, whereas using the BFGS algorithm it varies between 54.3 and 93.5% in both studied catchments, with calculated improvement for all seven developed networks with the best improvement in the Ressoul catchment presented in ANN06 with ΔR2 4.23% and ΔRMSE 1.74‰, and with the best improvement presented in ANN05 with ΔR2 6.07% and ΔRMSE 0.71‰ in the Mellah catchment. The analysis showed that the use of Quasi-Newton method performed better than the Levenberg–Marquardt in both studied areas.
Czasopismo
Rocznik
Strony
1649--1660
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Department of Hydraulic, Faculty of Technology, University of Abu Baker Belkaid, Tlemcen, Algeria
  • Laboratoire de Recherche Science de L’eau, National Polytechnic School, Algiers, Algeria
  • Laboratoire de Recherche Science de L’eau, National Polytechnic School, Algiers, Algeria
  • Laboratoire de Recherche Science de L’eau, National Polytechnic School, Algiers, Algeria
  • Department of Civil and Hydraulic Engineering, Faculty of Applied Sciences, University of Ouargla, Ouargla, Algeria
  • Department of Hydraulic, Faculty of Technology, University of Abu Baker Belkaid, Tlemcen, Algeria
  • Department of Geology, Faculty of Earth Sciences, University of Badji Mokhtar, Annaba, Algeria
Bibliografia
  • 1. Afan HA, El-Shafie A, Yaseen ZM, Hameed MM, Mohtar WHMW, Hussain A (2015) ANN based sediment prediction model utilizing different input scenarios. Water Resour Manag 29:1231–1245
  • 2. Ahmed F, Hassan M, Hashmi HN (2018) Developing nonlinear models for sediment load estimation in an irrigation canal. Acta Geophys 66:1485–1494
  • 3. Alizadeh MJ, Nodoushan EJ, Kalarestaghi N, Chau KW (2017) Toward multi-day-ahead forecasting of suspended sediment concentration using ensemble models. Environ Sci Pollut Res 24:28017–28025
  • 4. Alp M, Cigizoglu HK (2007) Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environ Model softw 22:2–13
  • 5. Bae DH, Jeong DM, Kim G (2007) Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique. Hydrol Sci J 52:99–113
  • 6. Bouguerra H, Bouanani A, Khanchoul K, Derdous O, Tachi SE (2017) Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the Revised Universal Soil Loss Equation through GIS. J Water Land Dev 32:13–23
  • 7. Bouhadeb CHE, Menani MR, Bouguerra H, Derdous O (2018) Assessing soil loss using GIS based RUSLE methodology, case of the Bou Namoussa watershed – North-East of Algeria. J Water Land Dev 36:27–35
  • 8. Bouzeria H, Ghenim AN, Khanchoul K (2017) Using artificial neural network (ANN) for prediction of sediment loads, application to the Mellah catchment, northeast Algeria. J Water Land Dev 33:47–55
  • 9. Broyden CG (1970) The convergence of single-rank quasi-newton methods. Math Comput 24:365–382
  • 10. Clair TA, Ehrman JM (1998) Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon and nitrogen export in eastern Canadian rivers. Water Resour Res 34:447–455
  • 11. Dennis J, More J (1977) Quasi-Newton methods, motivation and theory. SIAM Rev Soc Ind Appl Math 19:46–89
  • 12. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13:317–322
  • 13. Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24:23–26
  • 14. Golob R, Štokelj T, Grgič D (1998) Neural-network-based water inflow forecasting. Control Eng Pract 6:593–600
  • 15. Hagan MT, Menhaj MB (1994) Training multilayer networks with the Marquardt algorithm. IEEE Trans Neural Netw 5:989–993
  • 16. Halff AH, Halff HM, Azmoodeh M (1993) Predicting runoff from rainfall using neural networks. In: Engineering hydrology. ASCE, pp 760–765
  • 17. Hassan M, Shamim MA, Sikandar A, Mehmood I, Ahmed I, Ashiq SZ, Khitab A (2015) Development of sediment load estimation models by using artificial neural networking techniques. Environ Monit Assess 187(11):686
  • 18. Hassan M, Zaffar H, Mehmood I, Khitab A (2018) Development of streamflow prediction models for a weir using ANN and step-wise regression. Model Earth Syst Environ 4:1021–1028
  • 19. Jain SK, Das A, Srivastava DK (1999) Application of ANN for reservoir inflow prediction and operation. J Water Resour Plan Manag 125:263–271
  • 20. Kisi Ö (2004) Multi-layer perceptrons with Levenberg–Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrol Sci J 49:1025–1040
  • 21. Melesse AM, Ahmad S, McClain ME, Wang X, Lim YH (2011) Suspended sediment load prediction of river systems: An artificial neural network approach. Agric Water Manag 98:855–866
  • 22. Mustafa MR, Rezaur RB, Saiedi S, Isa MH (2012) River suspended sediment prediction using various multilayer perceptron neural network training algorithms—a case study in Malaysia. Water Resour Manage 26:1879–1897
  • 23. Nagy HM, Watanabe KAND, Hirano M (2002) Prediction of sediment load concentration in rivers using artificial neural network model. J Hydraul Eng 128:588–595
  • 24. Partal T (2009) River flow forecasting using different artificial neural network algorithms and wavelet transform. Can J Civ Eng 36:26–39
  • 25. Piasecki A, Jurasz J, Adamowski JF (2018) Forecasting surface water-level fluctuations of a small glacial lake in Poland using a wavelet-based artificial intelligence method. Acta Geophys 66:1093–1107
  • 26. Riad S, Mania J, Bouchaou L, Najjar Y (2004) Rainfall-runoff model using an artificial neural network approach. Math Comput Model 40:839–846
  • 27. Rowinski PM, Czernuszenko W (1998) Experimental study of river turbulence under unsteady conditions. Acta Geophysica Polonica 46:461–480
  • 28. Sahoo GB, Ray C, De-Carlo EH (2006) Use of neural network to predict flash flood and attendant water qualities of a mountainous stream on Oahu. Hawaii J Hydrol 327:525–538
  • 29. Shamim MA, Hassan M, Ahmad S, Zeeshan M (2016) A Comparison of artificial neural networks (ANN) and local linear regression (LLR) techniques for predicting monthly reservoir levels. KSCE J Civ Eng 20:971–977
  • 30. Shanno DF (1970) Conditioning of Quasi-Newton methods for function minimization. Math Comput 24:647–656
  • 31. Sudheer KP, Jain A (2004) Explaining the internal behaviour of artificial neural network river flow models. Hydrol Process 18:833–844
  • 32. Tachi SE, Ouerdachi L, Remaoun M, Derdous O, Boutaghane H (2016) Forecasting suspended sediment load using regularized neural network: case study of the Isser River (Algeria). J Water Land Dev 29:75–81
  • 33. Wang WC, Chau KW, Cheng CT, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374:294–306
  • 34. Wilamowski BM, Yu H (2010) Improved computation for Levenberg–Marquardt training. IEEE Trans Neural Netw 21:930–937
  • 35. Zealand CM, Burn DH, Simonovic SP (1999) Short term streamflow forecasting using artificial neural networks. J Hydrol 214:32–48
  • 36. Zhu YM, Lu XX, Zhou Y (2007) Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology 84:111–125
  • 37. Zou R, Lung WS, Wu J (2007) An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling. Water Resour Res 43:W08427
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd51cb93-a303-4238-a867-edb566cb35e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.