PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rough sets based on Galois connections

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rough set theory is an important tool to extract knowledge from relational databases. The original definitions of approximation operators are based on an indiscernibility relation, which is an equivalence one. Lately, different papers have motivated the possibility of considering arbitrary relations. Nevertheless, when those are taken into account, the original definitions given by Pawlak may lose fundamental properties. This paper proposes a possible solution to the arising problems by presenting an alternative definition of approximation operators based on the closure and interior operators obtained from an isotone Galois connection. We prove that the proposed definition satisfies interesting properties and that it also improves object classification tasks.
Rocznik
Strony
299--313
Opis fizyczny
Bibliogr. 66 poz., tab.
Twórcy
  • Department of Applied Mathematics, University of Málaga, Arquitecto Francisco Peñalosa, 6, 29071, Málaga, Spain
  • Department of Mathematics, University of Cádiz, Campus Río San Pedro, 11519, Puerto Real, Cádiz, Spain
  • Department of Mathematics, University of Cádiz, Campus Río San Pedro, 11519, Puerto Real, Cádiz, Spain
Bibliografia
  • [1] Alcalde, C., Burusco, A., Díaz-Moreno, J.C. and Medina, J. (2017). Fuzzy concept lattices and fuzzy relation equations in the retrieval processing of images and signals, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 25(Supplement-1): 99–120.
  • [2] Benítez-Caballero, M.J., Medina, J., Ramírez-Poussa, E. and Ślęzak, D. (2020). A computational procedure for variable selection preserving different initial conditions, International Journal of Computer Mathematics 97(1–2): 387–404.
  • [3] Birkhoff, G. (1967). Lattice Theory, 3rd Edn, American Mathematical Society, Providence, RI.
  • [4] Bloch, I. (2000). On links between mathematical morphology and rough sets, Pattern Recognition 33(9): 1487–1496.
  • [5] Bustince, H., Madrid, N. and Ojeda-Aciego, M. (2015). The notion of weak-contradiction: Definition and measures, IEEE Transactions on Fuzzy Systems 23(4): 1057–1069.
  • [6] Cornejo, M.E., Díaz-Moreno, J.C. and Medina, J. (2017a). Multi-adjoint relation equations: A decision support system for fuzzy logic, International Journal of Intelligent Systems 32(8): 778–800.
  • [7] Cornejo, M.E., Lobo, D. and Medina, J. (2018a). Syntax and semantics of multi-adjoint normal logic programming, Fuzzy Sets and Systems 345: 41–62, DOI: 10.1016/j.fss.2017.12.009.
  • [8] Cornejo, M.E., Medina, J. and Ramírez-Poussa, E. (2017b). Attribute and size reduction mechanisms in multi-adjoint concept lattices, Journal of Computational and Applied Mathematics 318: 388–402.
  • [9] Cornejo, M.E., Medina, J. and Ramírez-Poussa, E. (2018b). Characterizing reducts in multi-adjoint concept lattices, Information Sciences 422: 364–376.
  • [10] Cornelis, C., Medina, J. and Verbiest, N. (2014). Multi-adjoint fuzzy rough sets: Definition, properties and attribute selection, International Journal of Approximate Reasoning 55(1): 412–426.
  • [11] Couso, I. and Dubois, D. (2011). Rough sets, coverings and incomplete information, Fundamenta Informaticae 108(3–4): 223–247.
  • [12] Davey, B. and Priestley, H. (2002). Introduction to Lattices and Order, 2nd Edn, Cambridge University Press, Cambridge.
  • [13] Denecke, K., Erné, M. and Wismath, S.L. (Eds) (2004). Galois Connections and Applications, Kluwer Academic Publishers, Dordrecht.
  • [14] Di Nola, A., Sanchez, E., Pedrycz, W. and Sessa, S. (1989). Fuzzy Relation Equations and Their Applications to Knowledge Engineering, Kluwer Academic Publishers, Norwell, MA.
  • [15] Díaz-Moreno, J.C. and Medina, J. (2013). Multi-adjoint relation equations: Definition, properties and solutions using concept lattices, Information Sciences 253: 100–109.
  • [16] Díaz-Moreno, J.C., Medina, J. and Turunen, E. (2017). Minimal solutions of general fuzzy relation equations on linear carriers. An algebraic characterization, Fuzzy Sets and Systems 311: 112–123.
  • [17] Ganter, B. and Wille, R. (1999). Formal Concept Analysis: Mathematical Foundation, Springer Verlag, Berlin.
  • [18] Grant, J. and Hunter, A. (2006). Measuring inconsistency in knowledge bases, Journal of Intelligent Information Systems 27(2): 159–184.
  • [19] Hajek, P. (1998). Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht.
  • [20] Han, S.-E. (2019). Roughness measures of locally finite covering rough sets, International Journal of Approximate Reasoning 105: 368–385.
  • [21] Hassanien, A.E., Abraham, A., Peters, J.F., Schaefer, G. and Henry, C. (2009). Rough sets and near sets in medical imaging: A review, IEEE Transactions on Information Technology in Biomedicine 13(6): 955–968.
  • [22] Hassanien, A.E., Schaefer, G. and Darwish, A. (2010). Computational intelligence in speech and audio processing: Recent advances, in X.-Z. Gao et al. (Eds), Soft Computing in Industrial Applications, Springer, Berlin/Heidelberg, pp. 303–311.
  • [23] Järvinen, J., Radeleczki, S. and Veres, L. (2009). Rough sets determined by quasiorders, Order 26(4): 337–355.
  • [24] Kortelainen, J. (1994). On relationship between modified sets, topological spaces and rough sets, Fuzzy Sets and Systems 61(1): 91–95.
  • [25] Luo, C., Li, T., Chen, H., Fujita, H. and Yi, Z. (2018). Incremental rough set approach for hierarchical multicriteria classification, Information Sciences 429: 72–87.
  • [26] Madrid, N. (2017). An extension of f-transforms to more general data: Potential applications, Soft Computing 21(13): 3551–3565.
  • [27] Madrid, N. and Ojeda-Aciego, M. (2011a). Measuring inconsistency in fuzzy answer set semantics, IEEE Transactions on Fuzzy Systems 19(4): 605–622.
  • [28] Madrid, N. and Ojeda-Aciego, M. (2011b). On the existence and unicity of stable models in normal residuated logic programs, International Journal of Computer Mathematics 89(3): 310–324.
  • [29] Madrid, N. and Ojeda-Aciego, M. (2017). A view of f-indexes of inclusion under different axiomatic definitions of fuzzy inclusion, in S. Moral et al. (Eds), Scalable Uncertainty Management, Springer, Cham, pp. 307–318.
  • [30] Madrid, N., Ojeda-Aciego, M., Medina, J. and Perfilieva, I. (2019). L-fuzzy relational mathematical morphology based on adjoint triples, Information Sciences 474: 75–89.
  • [31] Medina, J. (2012a). Multi-adjoint property-oriented and object-oriented concept lattices, Information Sciences 190: 95–106.
  • [32] Medina, J. (2012b). Relating attribute reduction in formal, object-oriented and property-oriented concept lattices, Computers & Mathematics with Applications 64(6): 1992–2002.
  • [33] Medina, J. (2017). Minimal solutions of generalized fuzzy relational equations: Clarifications and corrections towards a more flexible setting, International Journal of Approximate Reasoning 84: 33–38.
  • [34] Medina, J., Ojeda-Aciego, M. and Ruiz-Calviño, J. (2009). Formal concept analysis via multi-adjoint concept lattices, Fuzzy Sets and Systems 160(2): 130–144.
  • [35] Medina, J., Ojeda-Aciego, M. and Vojtáš, P. (2004). Similarity-based unification: A multi-adjoint approach, Fuzzy Sets and Systems 146(1): 43–62.
  • [36] Novák, V., Mockor, J. and Perfilieva, I. (1999). Mathematical Principles of Fuzzy Logic, Kluwer, Boston, MA.
  • [37] Pagliani, P. (2014). The relational construction of conceptual patterns—Tools, implementation and theory, in M. Kryszkiewicz et al. (Eds), Rough Sets and Intelligent Systems Paradigms, Springer International Publishing, Cham, pp. 14–27.
  • [38] Pagliani, P. (2016). Covering Rough Sets and Formal Topology—A Uniform Approach Through Intensional and Extensional Constructors, Springer, Berlin/Heidelberg, pp. 109–145.
  • [39] Pagliani, P. and Chakraborty, M. (2008). A Geometry of Approximation: Rough Set Theory Logic, Algebra and Topology of Conceptual Patterns (Trends in Logic), 1st Edn, Springer Publishing Company, Berlin/Heidelberg.
  • [40] Pawlak, Z. (1982). Rough sets, International Journal of Computer and Information Science 11: 341–356.
  • [41] Pawlak, Z. (1991). Rough Sets—Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht.
  • [42] Perfilieva, I. (2006). Fuzzy transforms: Theory and applications, Fuzzy Sets and Systems 157(8): 993–1023.
  • [43] Perfilieva, I., Singh, A.P. and Tiwari, S.P. (2017). On the relationship among f-transform, fuzzy rough set and fuzzy topology, Soft Computing 21(13): 3513–3523.
  • [44] Ronse, C. and Heijmans, H.J.A.M. (1991). The algebraic basis of mathematical morphology. II: Openings and closings, CVGIP: Image Understanding 54(1): 74–97.
  • [45] Sanchez, E. (1976). Resolution of composite fuzzy relation equations, Information and Control 30(1): 38–48.
  • [46] Shao, M.-W., Liu, M. and Zhang, W.-X. (2007). Set approximations in fuzzy formal concept analysis, Fuzzy Sets and Systems 158(23): 2627–2640.
  • [47] Skowron, A., Swiniarski, R. and Synak, P. (2004). Approximation spaces and information granulation, in S. Tsumoto et al. (Eds), Rough Sets and Current Trends in Computing, Springer, Berlin/Heidelberg, pp. 116–126.
  • [48] Slowinski, R. and Vanderpooten, D. (1997). Similarity relation as a basis for rough approximations, in P.P. Wang (Ed.), Advances in Machine Intelligence and Soft Computing, Duke University, Durham, NC, pp. 17–33.
  • [49] Stell, J.G. (2007). Relations in mathematical morphology with applications to graphs and rough sets, in S. Winter et al. (Eds), Spatial Information Theory, Springer, Berlin, Heidelberg, pp. 438–454.
  • [50] Tan, A., Wu, W.-Z. and Tao, Y. (2018). A unified framework for characterizing rough sets with evidence theory in various approximation spaces, Information Sciences 454–455: 144–160.
  • [51] Varma, P.R.K., Kumari, V.V. and Kumar, S.S. (2015). A novel rough set attribute reduction based on ant colony optimisation, International Journal of Intelligent Systems Technologies and Applications 14(3–4): 330–353.
  • [52] Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts, in I. Rival (Ed.), Ordered Sets, Reidel, Dordrecht, pp. 445–470.
  • [53] Wille, R. (2005). Formal concept analysis as mathematical theory of concepts and concept hierarchies, in B. Ganter et al. (Eds), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 3626, Springer, Berlin/Heidelberg, pp. 1–33.
  • [54] Zakowski, W. (1983). Approximations in the space (u, π), Demonstratio Mathematica 16(3): 761–769.
  • [55] Yang, X., Li, T., Fujita, H., Liu, D. and Yao, Y. (2017). A unified model of sequential three-way decisions and multilevel incremental processing, Knowledge-Based Systems 134: 172–188.
  • [56] Yao, Y. (1998a). A comparative study of fuzzy sets and rough sets, Information Sciences 109(1): 227–242.
  • [57] Yao, Y. (1998b). Relational interpretations of neighborhood operators and rough set approximation operators, Information Sciences 111(1): 239–259.
  • [58] Yao, Y. (2018). Three-way decision and granular computing, International Journal of Approximate Reasoning 103: 107–123.
  • [59] Yao, Y. and Chen, Y. (2006). Rough set approximations in formal concept analysis, in J.F. Peters and A. Skowron (Eds), Transactions on Rough Sets V, Springer, Berlin/Heidelberg, pp. 285–305.
  • [60] Yao, Y. and Lingras, P. (1998). Interpretations of belief functions in the theory of rough sets, Information Sciences 104(1): 81–106.
  • [61] Yao, Y.Y. (1996). Two views of the theory of rough sets in finite universes, International Journal of Approximate Reasoning 15(4): 291–317.
  • [62] Yao, Y.Y. (2004). A comparative study of formal concept analysis and rough set theory in data analysis, in S. Tsumoto et al. (Eds), Rough Sets and Current Trends in Computing, Springer, Berlin/Heidelberg, pp. 59–68.
  • [63] Yao, Y. and Yao, B. (2012). Covering based rough set approximations, Information Sciences 200: 91–107.
  • [64] Zhang, Q., Xie, Q. and Wang, G. (2016). A survey on rough set theory and its applications, CAAI Transactions on Intelligence Technology 1(4): 323–333.
  • [65] Zhu, W. (2007). Generalized rough sets based on relations, Information Sciences 177(22): 4997–5011.
  • [66] Ziarko,W. (2008). Probabilistic approach to rough sets, International Journal of Approximate Reasoning 49(2): 272–284.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd51609c-c3e2-463b-81f8-42b102226efa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.