PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Content of PAHs, activities of γ-radionuclides and ecotoxicological assessment in biochars

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this research was to determine the effect of thermal conversion temperature and plant material addition to sewage sludge on the PAHs content and the activity of selected γ-radionuclides in biochars, and to conduct an ecotoxicological assessment. The pyrolysis of the mixtures of sewage sludge and plant materials at 300°C and such temperature caused an increase in the contents of 2- and 3-ring hydrocarbons. During the pyrolysis of organic materials at 600°C, the amount of the following compounds was reduced in biochars: benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3c,d]pyrene, dibenzo[a,h]anthracene, and benzo[g,h,i]perylene. Among γ-radioisotopes of the elements, natural radiogenic isotopes were dominant. 137Cs was the only artificial radioactive isotope. The pyrolysis of the mixtures of municipal sewage sludge and plant materials revealed that isotope  40K had the highest radioactive activity. In the case of other analysed nuclides, activities of  212Pb,  214Pb,  214Bi, and  137Cs were determined after the sample pyrolysis. The extracts from the mixtures of sewage sludge and plant materials were non-toxic to Vibrio fischeri.
Słowa kluczowe
Rocznik
Strony
27--35
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • University of Agriculture in Krakow, Department of Agricultural and Environmental Chemistry, al. Mickiewicza 21, 31-120 Krakow, Poland
  • University of Agriculture in Krakow, Department of Agricultural and Environmental Chemistry, al. Mickiewicza 21, 31-120 Krakow, Poland
autor
  • Department of Soil Science Erosion and Land Conservation, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
autor
  • University of Agriculture in Krakow, Department of Agricultural and Environmental Chemistry, al. Mickiewicza 21, 31-120 Krakow, Poland
autor
  • University of Agriculture in Krakow, Department of Agricultural and Environmental Chemistry, al. Mickiewicza 21, 31-120 Krakow, Poland
autor
  • The Pedagogical University of Cracow, Podchorążych 2, 30-084 Krakow, Poland
autor
  • University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  • Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-142 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry; al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry; al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Magdziarz, A. & Werle, S. (2014). Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manage. 34(1), 174–179. DOI: 10.1016/j.wasman.2013.10.033.
  • 2. Hamawand, I., Pereira da Silva, W., Eberhard, F. & Antille, D.L. (2015). Issues related to waste sewage sludge drying under superheated steam. Pol. J. Chem. Technol. 17(4), 5–14. DOI: 10.1515/pjct-2015-0062.
  • 3. Smith, S.R. (2009). Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling. Philos. Transl. Roy. Soc. A. 367, 4005–4041. DOI: 10.1080/10807039.2014.930295.
  • 4. Gondek, K. & Mierzwa-Hersztek, M. (2016). The effect of thermal conversion of municipal sewage sludge on the content of Cu, Cd, Pb and Zn and phytotoxicity of biochars. J. Elem., DOI: 10.5601/jelem.2016.21.1.1116 (in press).
  • 5. Oleszczuk, P., Hale, E.S., Lehmann, J. & Cornelissen, G. (2012). Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Biores. Technol. 111, 84–91. DOI: 10.1016/j.biortech.2012.02.030.
  • 6. IBI. 2012. Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil. 2012; (cited 14 March, 2015).
  • 7. Sun, K., Ro, K., Guo, M., Novak, J., Mashayekhi, H. & Xing, B. (2011). Sorption of bisphenol A, 17a-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Biores. Tech. 102, 5757–5763. DOI: 10.1016/j.biortech.2011.03.038.
  • 8. Chen, W., Han, J., Qin, L., Furuuchi, M. & Mitsuhiko, H. (2014). The emission characteristics PAHs during coal and sewage sludge co-combustion in a drop tube furnace. Aerosol Air Qual. Res. 14, 1160–1167. DOI: 10.4209/aaqr.2013.06.0192
  • 9. Busch, D., Stark, A., Kammann, C.I. & Glaser, B. (2013). Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to bio-char from pyrolysis. Ecotoxicol. Environ. Saf. 97, 59–66. DOI: 10.1016/j.ecoenv.2013.07.003.
  • 10. Hale, S.E., Lehmann, J., Rutherford, D., Zimmerman, A.R., Bachmann, R.T., Shitumbanuma, V., O’Toole, A., Sundqvist, K.L., Arp, H.P.H. & Cornelissen, G. (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol. 46, 2830–2838. DOI: 10.1021/es203984k.
  • 11. Oleszczuk, P., Jośko, I. & Kuśmierz, M. (2013). Biochar properties regarding to contaminants content and ecotoxicological assessment. J. Hazard. Mater. 260, 375–382. DOI: 10.1016/j.jhazmat.2013.05.044.
  • 12. Gondek, K., Baran, A. & Kopeć, M. (2014). The effect of low-temperature transformation of mixtures of sewage sludge and plant materiale on content, leachability and toxicity of heavy metals. Chemosphere 117, 33–39. DOI: 10.1016/j.chemosphere.2014.05.032.
  • 13. Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M. & Usman, A.R.A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Biores. Technol. 131, 374–379. DOI: 10.1016/j.biortech.2012.12.165.
  • 14. Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of gases in multimolecular layers. J. Amer. Chem. Soc. 60, 309–319. DOI: 10.1021/ja01269a023.
  • 15. Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Amer. Chem. Soc. 73, 373–380. DOI: 10.1021/ja01145a126.
  • 16. Dubinin, M.M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235–241. DOI: 10.1021/cr60204a006.
  • 17. Jindo, K., Suto, K., Matsumoto, K., Garcia, C., Sonoki, T. & Sanchez-Monedero, M.A. (2012). Chemical and biochemical chracterisation of biochar-blended composts prepared from poultry manure. Biores. Technol. 110, 396–404. DOI: 10.1016/j.biortech.2012.01.120.
  • 18. Agrafioti, E., Bouras, G., Kalderis, D. & Diamadopulos, E. (2013). Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrol. 101, 72–78. DOI: 10.1016/j.jaap.2013.02.010.
  • 19. Maliszewska-Kordybach, B., Smreczak, B. & Klimkowicz-Pawlas, A. (2009). Concentrations, sources, and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Sci. Total Environ. 12(1), 3746–3753. DOI: 10.1016/j.scitotenv.2009.01.010.
  • 20. Nisbet, I.C.T. & LaGoy, P.K. (1992). Toxic (TEFs) for poly-cyclic aromatic hydrocarbons (PAHs). Reg. Toxicol. Pharmacol. 16, 290–300. DOI: 10.1016/0273-2300(92)90009-X.
  • 21. Knoll, G.F. (2010). Radiation Detection and Measurement (4-th edition). Wiley Publishing. pp. 860.
  • 22. Gilmore, G. & Hemingway, J.D. (2011). Practical Gamma Ray Spectrometry, Wiley Publishing. pp. 309. http://www.amazon.com/Practical-Gamma-ray-Spectroscopy-Gordon-Gilmore/dp/0470861967
  • 23. MicrobicsCorporation. (1992). Microtox Manual Toxicity Testing Handbook. Carlsbad, CA, USA.
  • 24. Kim, H.W., Han, S.K. & Shin, H.S. (2003). The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manag. Res. 21(6), 515–526. DOI: 10.1177/0734242X0302100604.
  • 25. Ghetti, P., Ricca, L. & Angelini, L. (1996). Thermal analysis of biomas and corresponding pyrolysis products. Fuel 75(5), 565-573. DOI: 10.1016/0016-2361(95)00296-0.
  • 26. Keiluweit, M., Kleber, M., Sparrow, M.A., Simoneit, B.R.T. & Prahl, F.G. (2012). Solvent extractable polycyclic aromatic hydrocarbons in biochar: Influence of pyrolysis temperature and feedstock. Environ. Sci. Technol. 46, 9333–9341. DOI: 10.1021/es302125k.
  • 27. Kołtowski, M. & Oleszczuk, P. (2015). Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecolog. Engin. 75, 79–85. http://dx.DOI.org/10.1016/j.ecoleng.2014.11.004
  • 28. Gondek, K., Kopeć, M., Chmiel, M. & Spałek, I. (2008). Response of Zea Maize and microorganisms to soil pollution with polycyclic aromatic hydrocarbons (PAHs). Pol. J. Environ. Stud. 17(6), 875–880. http://www.pjoes.com/pdf/17.6/875-880.pdf
  • 29. Gondek, K., Mierzwa-Hersztek, M., Baran, A., Szostek, M., Pieniążek, R., Pieniążek, M., Stanek-Tarkowska, J. & Noga, T. (2016). The Effect of Low-Temperature Conversion of Plant Materials on the Chemical Composition and Ecotoxicity of Biochars. Waste Biom. Valor. DOI: 10.1007/s12649-016-9621-2.
  • 30. Vacha, R., Cechmankova, J. & Skala, J. (2010). Polycyclic aromatic hydrocarbons in soil and selected plants. Plant Soil Environ. 56, 434–443. http://www.agriculturejournals.cz/publicFiles/95159.pdf
  • 31. Masto, R.E. George, J. & Ram, L.C. (2015). PAHs and potentially toxic elements in the fly ash and bed ash of biomass fired power plants. Fuel Proc. Technol. 132, 139–152. DOI: 10.1016/j.fuproc.2014.12.036.
  • 32. Van den Heuvel, H. &Van Noort, P.C.M. (2004). Removal of indigenous compounds to determine maximum capacities for adsorption of phenanthrene by sediments. Chemosphere 54, 763–769. DOI: 10.1016/j.chemosphere.2003.09.005.
  • 33. Guilloteau, A., Nguyen, M.L., Bedjanian, Y. & Le Bras, G. (2008). Desorption of polycyclic aromatic hydrocarbons from soot surface: pyrene and fluoranthene. J. Phys. Chem. A. 112, 10552–10559. DOI: 10.1021/jp803043s.
  • 34. Zhu, Y.G. & Smolders, E. (2000). Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J. Exp. Bot. 51(351), 1635–1645. DOI: 10.1093/jexbot/51.351.1635.
  • 35. Vinogradov, A.P. (1957). Biological role of potassium-40. Nature 180, 507–508. DOI: 10.1038/180507a0.
  • 36. Rosik-Dulewska, C. & Dulewski, J. (1989). The chemical composition and the content of selected radionuclides in plants cultivated on an ash dump of the halemba power plant. Soil Sci. Ann. XL(2), 151–169. http://ssa.ptg.sggw.pl/files/artykuly/1989_40/1989_tom_40_nr_2/tom_40_nr_2_151-169.pdf
  • 37. Królak, E., Filipek, K. & Bardzka, E. (2013). Comparative analysis of sewage sludge from two sewage treatment plants: in Mrozy and Siedlce (Mazowieckie Province). Environ. Prot. Nat. Res. 24, 57–61. DOI: 10.2478/oszn-2013-0019.
  • 38. Christofi, N., Hoffmann, C. & Tosh, L. (2002). Hormesis responses of free and immobilized light – emitting bacteria. Ecotoxicol. Environ. Saf. 52, 227–231. DOI: http://dx.DOI.org/10.1006/eesa.2002.2203
  • 39. Jaiswal, A.K., Elad, Y., Graber, E.R. & Frenkel, O. (2014). Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol. Biochem. 69, 110–118. DOI: 10.1016/j.soilbio.2013.10.051.
  • 40. Mierzwa-Hersztek, M., Gondek, K. & Baran, A. (2016). Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Appl. Soil Ecol. 105, 144–150. DOI: 10.1016/j.apsoil.2016.04.006.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd4f92ff-06ec-4ac8-8f82-84ee08973dd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.