PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bonding xenon on the surface of uranium dioxide single crystal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present density functional theory (DFT) calculation results of xenon atom interaction with the surface of uranium dioxide single crystal. A pseudo-potential approach in the generalized gradient approximation (GGA) was applied using the ABINIT program package. It has been revealed that close to the surface a potential well is formed for xenon atom due to its interaction with the atoms of oxygen and uranium. Depth and shape of the well is the subject of “ab initio” calculations. The calculations were performed both for the case of oxygenic and metallic surfaces. It has been shown, that the potential well for the oxygenic surface is deeper than for the metallic surface.
Czasopismo
Rocznik
Strony
453--458
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • National Centre for Nuclear Research (NCBJ), 7 Andrzeja Sołtana Str., 05-400 Otwock/Świerk, Poland, Tel.: +48 22 718 0055, Fax: +48 22 779 3888
autor
  • National Centre for Nuclear Research (NCBJ), 7 Andrzeja Sołtana Str., 05-400 Otwock/Świerk, Poland, Tel.: +48 22 718 0055, Fax: +48 22 779 3888
Bibliografia
  • 1. Anderson DA, Uberuaga BP, Nericar PV (2011) U and Xe transport in UO2±x: Density functional theory calculations. Phys Rev B 84:054105-17
  • 2. Barlett N, Sladky FO (1968) The relative fluoride ion donor abilities of XeF2, XeF4 and XeF6, and a chemical purification of XeF4. J Am Chem Soc 90:19:5316–5317
  • 3. Beauvy M (1992) Nonideality of the solid solution in (U,Pu)O2 nuclear fuels. J Nucl Mater 188:232–238
  • 4. Bellamy RG, Rich JB (1969) Grain boundary gas release and swelling in high burn-up uranium dioxide. J Nucl Mater 33;1:64–76
  • 5. Burbach J, Zimmermann H (1985) Spaltgasverhalten in bestrahltem UO2 bei out-of-pile-Gluehungen von 1400 bis 2000`0 C. KfK 3997:1–39
  • 6. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry. Wiley, New York
  • 7. Crocombette JPJ (2002) “Ab initio” energetics of some fission products (Kr, I, Cs, Sr and He) in uranium dioxide. J Nucl Mater 305:29–36
  • 8. Dąbrowski L, Szuta M (2012) “Ab initio” study of helium atoms immobilization in UO2 crystals. Nukleonika 57;3:337–343
  • 9. Dąbrowski L, Szuta M (2013) Diffusion of helium in the perfect uranium and thorium dioxide single crystals. Nukleonika 58;2:295–300
  • 10. Denteneer P, Haeringen W(1985) The pseudopotential- -density-functional method in momentum space: details and test cases. J Phys C 18:4127–4134
  • 11. Fermi E (1934) On the pressure displacement of higher terms in spectral series. N Cimento 11:157–166 (in Italian) 12. Frazer BC, Shirane G, Cox DE, Olsen CE (1965) Neutron-diffraction study of antiferromagnetism in UO2. Phys Rev A 140:1448–1452
  • 13. Freyss M, Vergnett N, Petit T (2006) “Ab initio” modeling of the behavior of helium and xenon in actinide dioxide nuclear fuels. J Nucl Mater 352:144–150
  • 14. Gryaznov D, Heifets E, Kotomin E (2009) “Ab initio” DFT+U study of He atom incorporation into UO2 crystals. Phys Chem Chem Phys 11:7241–7247
  • 15. Hargreaves R, Collins DM (1976) A quantitative model for fission gas release and swelling in irradiated uranium dioxide. J Br Nucl Energy Soc 15:311–318
  • 16. Hohenberg H, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871
  • 17. http://www.abinit.org
  • 18. Ihm J, Zunger A, Cohen ML (1979) Momentum--space formalism for the total energy of solids. J Phys C 12:4409–4415
  • 19. Kenichi I, Ryo K, Iwano Y (1985) Finite element model of fission gas release from UO2 fuel. J Nucl Sci Technol 22;2:129–138
  • 20. Kohn W, Sham IJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138
  • 21. Kudin KN, Scuseria GE, Martin RL (2002) Hybrid density – functional theory and the insulating gap of UO2. PhysRev Lett 89:266402-4
  • 22. Lewis WB, Turnbull JA (1980) Review of irradiation induced resolution in oxide fuels. Radiation Effect 53;3/4:243–249
  • 23. Li J, Liang BE, Andrews L (2002) Noble gas-actinide compounds: complexation of the CUO molecule by Ar, Kr and Xe atoms in noble gas matrices. Science 295:2242–2245
  • 24. Lorenz M, Rasanen M, Bondybey VE (2000) Neutral xenon hydrides in solid neon and their intrinsic stability.J Phys Chem A 104;16:3770–3774
  • 25. MacEwan JR, Stevens WH (1964) Xenon diffusion in UO2. J Nucl Mater 11;1:77–93
  • 26. McInnes DA, Winter PW (1988) The effect of the chemically inert fission products on the chemistry of irradiated UO2. J Phys Chem Solids 49;2:143–150
  • 27. Nakajima T, Saito H (1987) A comparison between fission gas release data and FEMAXI-IV. Nucl Eng Des 101;3:267–279
  • 28. Nogita Y, Une K (1993) Thermal recovery of radiation defects and microstructural change in irradiated UO2 fuels. J Nucl Sci Technol 30;9:900–910
  • 29. Pauling L (1933) The formulas of antimonic acid and the antimonates. J Am Chem Soc 55:1895–1900
  • 30. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for “ab initio” total – energy calculations: molecular dynamics and conjugate gradiens. Rev Mod Phys 64;4:1045–1097
  • 31. Petit T, Lemaignam C, Jollet F, Bigot BF, Pasturel A (1998) Point defects in uranium dioxide. Philos Mag B 77;3:779–786
  • 32. Pettersson M, Lundell J, Rasanen M (1999) New rare--gas-containing neutral molecules. Eur J Inorg Chem 4:729–737
  • 458 L. Dąbrowski, M. Szuta
  • 33. Philips C, Kleinman L (1959) New method for calculating wave functions in crystals and molecules. Phys Rev 116:287–294
  • 34. Ray ILF, Thiele H, Matzke H (1992) Transmission electron microscopy study of fission product behaviour in high nurnup UO2. J Nucl Mater 188:90–95
  • 35. Rest J, Cronenberg WA (1987) Modeling the behavior of Xe, I, Cs, Te, Ba and Sr in solid and liquefied fuel during severe accidents. J Nucl Mater 150;2:203–225
  • 36. Sattonay G, Vincent L, Garrido F, Thome L (2006) Xenon versus helium behavior in UO2 single crystals: A TEM investigation. J Nucl Mater 355;1/3:131–135
  • 37. Stein L (1983) The chemistry of radon. Radiochem Acta 32:163–171
  • 38. Szuta M (1994) The diffusion coefficient of fission- -product rare gases in single crystal uranium dioxide during irradiation. J Nucl Mater 210:178–186
  • 39. Szuta M (2006) Chemical activity of noble gases Kr and Xe and its impact on fission gas accumulation in the irradiated UO2 fuel. In: Proc of the 6th Int Conf on WWER Fuel Performance, Modelling and Experimental Support, 19–23 September 2005, Albena, Bulgaria. Institute of Nuclear Energy of the Bulgarian Academy of Sciences, pp 345–354
  • 40. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43;3:1993–2006
  • 41. Une K, Shinji K (1990) Fission gas release during post irradiation annealing of BWR fuels. J Nucl Sci Technol 27:1002–1016
  • 42. White RJ, Tucker MO (1983) A new fission-gas release model. J Nucl Mater 118:1–38
  • 43. Zimmermann H (1978) Investigations on swelling and fission gas behaviour in uranium dioxide. J Nucl Mater 75:154–161
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd4f6d24-fbb5-4560-aeca-df036ae3e81c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.