PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of piezoelectric materials to convert kinetic energy into electrical energy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal was to determine the efficiency of converting kinetic energy into electrical energy in piezoelectric materials. The article presents research results regarding the relationship between the number of piezoelectric transducers, the generated voltage, and the relationship between the pressure force and the induced voltage. Design/methodology/approach Experimental research began with determining whether the voltage generated by piezoelectric transducers connected in series is proportional to their number. The spacers were then applied to see if this increased the performance of the test platform. The latest tests were carried out at the author's measurement station. Findings The authors of the work researched electricity generation by piezoelectric materials, confirming their potential but showing limitations related to the brittleness of the materials. The work suggests the possibility of improving the efficiency of these materials by examining the influence of the pressure frequency on the obtained value of the generated voltage. Research limitations/implications The main limitation was the need to develop an optimal test platform design that would effectively use the piezoelectric potential of the transducers while preventing their damage. The results were not entirely satisfactory; therefore, future research is intended to optimise the parameters of transducers and the test platform to maximise efficiency in converting mechanical energy into electrical energy. Practical implications A practical application of the obtained results may be using energy produced using piezoelectric membranes in renewable energy, for example, to power streetlamps, road signs, or other low-power devices. Originality/value The main originality of the research is the possibility of its practical application. Research on such many piezoelectric membranes connected in series is rare, which makes this configuration original.
Rocznik
Strony
231--237
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Theoretical and Applied Mechanics, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • AIUT sp. z o.o., ul. Wyczółkowskiego 113, 44-109 Gliwice, Poland
  • Department of Material Technologies, Faculty of Materials Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
  • Material Innovations Laboratory, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] M. Habib, I. Lantgios, K. Hornbostel, A Review of Ceramic, Polymer and Composite Piezoelectric Materials, Journal of Physics D: Applied Physics 55/42 (2022) 423002. DOI: https://doi.org/10.1088/1361-6463/ac8687
  • [2] N. Li, Z. Yi, Y. Ma, F. Xie, Y. Huang, Y. Tian, X. Dong, Y. Liu, X. Shao, Y. Li, L. Jin, J. Liu, Z. Xu, B. Yang, H. Zhang, Direct Powering a Real Cardiac Pacemaker by Natural Energy of Heartbeat, ACS Nano 13/3 (2019) 2822-2830. DOI: https://doi.org/10.1021/acsnano.8b08567
  • [3] L. Dong, C. Jin, A.B. Closson, I. Trase, H.C. Richards, Z. Chen, J.X.J. Zhang, Cardiac Energy Harvesting and Sensing Based on Piezoelectric and Triboelectric Designs, Nano Energy 76 (2020) 105076. DOI: https://doi.org/10.1016/j.nanoen.2020.105076
  • [4] M. Mrówka, J. Lenża-Czempik, A. Dawicka, M. Skonieczna, Polyurethane-Based Nanocomposites for Regenerative Therapies of Cancer Skin Surgery with Low Inflammatory Potential to Healthy Fibroblasts and Keratinocytes In Vitro, ACS Omega 8/41 (2023) 37769-37780. DOI: https://doi.org/10.1021/acsomega.3c01663
  • [5] M. Chomiak, Reuse of polyester-glass laminate waste in polymer composites, Journal of Achievements in Materials and Manufacturing Engineering 107/2 (2021) 49-58. DOI: https://doi.org/10.5604/01.3001.0015.3583
  • [6] T. Jintanawan, G. Phanomchoeng, S. Suwankawin, P. Kreepoke, P. Chetchatree, C. U-viengchai, Design of Kinetic-Energy Harvesting Floors, Energies 13/20 (2020) 5419. DOI: https://doi.org/10.3390/en13205419
  • [7] Pavegen, Every Step Generates a Powerful Connection. Available from: https://www.pavegen.com/ (access in: 01.09.2023)
  • [8] R. Chmielewski, A. Baryłka, J. Obolewicz, The impact of design and executive errors affecting the damage to the floor of the concert hall, Journal of Achievements in Materials and Manufacturing Engineering 104/2 (2021) 49-56. DOI: https://doi.org/10.5604/01.3001.0014.8488
  • [9] M. Mrówka, D. Franke, M. Ošlejšek, M. Jureczko, Influence of Citrus Fruit Waste Filler on the Physical Properties of Silicone-Based Composites. Materials 16/19 (2023) 6569. DOI: https://doi.org/10.3390/ma16196569
  • [10] K. Stencel, M. Jureczko, Optimal Design of Electric Motorcycle Tubular Frame using Topology Optimization, WSEAS Transactions on Applied and Theoretical Mechanics 18 (2023) 150-160. DOI: https://doi.org/10.37394/232011.2023.18.14
  • [11] C. Bala Manikandan, S. Balamurugan, P. Balamurugan, S. Lionel Beneston, Weight reduction of motorcycle frame by topology optimization, Journal of Achievements in Materials and Manufacturing Engineering 91/2 (2018) 67-77. DOI: https://doi.org/10.5604/01.3001.0012.9664
  • [12] B. Gadgay, D.C. Shubhangi, H. Abhishek, Foot Step Power Generation Using Piezoelectric Materials, Proceedings of the IEEE International Conference on Computation System and Information Technology for Sustainable Solutions “CSITSS”, Bangalore, India, 2021, 1-5. DOI: https://doi.org/10.1109/CSITSS54238.2021.9682844
  • [13] G.C. Somashekhar, K.H. Anu Reddy, M. Bini, L. Prateeka, Energy Generation from Footsteps Using Piezoelectric Sensors, International Journal of Computer Sciences and Engineering 9/6 (2021) 54-58. DOI: https://doi.org/10.26438/ijcse/v9i6.5458
  • [14] P. Bhatele, S. Mali, A. Mali, M. Chrungoo, A. Mali, R. Makode, Energy Generation Via Footsteps Using Piezoelectric Sensor, International Research Journal of Engineering and Technology 9/12 (2022) 647-650.
  • [15] S. Chand, J. Kumar, Evidence for the Double Distribution of Barrier Heights in Pd 2Si/n-Si Schottky diodes from I - V - T measurements, Semiconductor Science and Technology 11/8 (1996) 1203. DOI: https://doi.org/10.1088/0268-1242/11/8/015
  • [16] S. Chand, S. Bala, Analysis of Current-Voltage Characteristics of Inhomogeneous Schottky Diodes at Low Temperatures, Applied Surface Science, 252/2 (2005) 358-363. DOI: https://doi.org/10.1016/j.apsusc.2005.01.009
  • [17] A.C. Redmond, J. Crosbie, R.A. Ouvrier, Development and Validation of a Novel Rating System for Scoring Standing Foot Posture: The Foot Posture Index, Clinical Biomechanics 21/1 (2006) 89-98. DOI: https://doi.org/10.1016/j.clinbiomech.2005.08.002
  • [18] S.M. Al-Jaber, I. Saadeddin, Theoretical and Experimental Analysis of Energy in Charging a Capacitor by Step-Wise Potential, Journal of Applied Mathematics and Physics 8 (2020) 38-52. DOI: https://doi.org/10.4236/jamp.2020.81004
  • [19] A. Bezryadin, A. Belkin, E. Llin, M. Pak, E. Colla, A. Huber, Large Energy Storage Efficiency of the Dielectric Layer of Graphene Nanocapacitors. Nanotechnology 28/49 (2017) 495401. DOI: https://doi.org/10.1088/1361-6528/aa935c
  • [20] T.-B. Xu, 7 - Energy Harvesting Using Piezoelectric Materials in Aerospace Structures, in: F.-G. Yuan (ed), Structural Health Monitoring (SHM) in Aerospace Structures, Woodhead Publishing, Sawston, Cambridge, 2016, 175-212. DOI: https://doi.org/10.1016/B978-0-08-100148-6.00007-X
  • [21] B. Zhao, F. Qian, A. Hatfield, L. Zuo, T.-B. Xu, A Review of Piezoelectric Footwear Energy Harvesters: Principles, Methods, and Applications, Sensors 23/13 (2023) 5841. DOI: https://doi.org/10.3390/s23135841
  • [22] M. Safaei, H.A. Sodano, S.R. Anton, A review of Energy Harvesting Using Piezoelectric Materials: State-of-the-Art a Decade Later (2008–2018), Smart Materials and Structures 28/11 (2019) 113001. DOI: https://doi.org/10.1088/1361-665X/ab36e4
  • [23] M.C. Sekhar, E. Veena, N.S. Kumar, K C.B. Naidu, A. Mallikarjuna, D.B. Basha, A Review on Piezoelectric Materials and Their Applications, Crystal Research and Technology 58/2 (2022) 2200130. DOI: https://doi.org/10.1002/crat.202200130
  • [24] C. Covaci, A. Gontean, Piezoelectric Energy Harvesting Solutions: A Review, Sensors 20/12 (2020) 3512. DOI: https://doi.org/10.3390/s20123512
  • [25] Y. Cao, F. Zhang, A. Sha, Z. Liu, J. Li, Y. Hao, Energy harvesting performance of a full-pressure piezoelectric transducer applied in pavement structures, Energy and Buildings 266 (2022) 112143. DOI: https://doi.org/10.1016/j.enbuild.2022.112143
  • [26] A. Aabid, M.A. Raheman, Y.E. Ibrahim, A. Anjum, M. Hrairi, B. Parveez, N. Parveen, J.M. Zayan, A Systematic Review of Piezoelectric Materials and Energy Harvesters for Industrial Applications, Sensors 21/12 (2021) 4145. DOI: https://doi.org/10.3390/s21124145
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd478b06-85d7-4a9a-a802-94bdc2e9f7ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.