PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of coal particle size on coal adsorption and desorption characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ wielkości ziaren węgla na charakterystyki adsorpcji i desorpcji na węglu
Języki publikacji
EN
Abstrakty
EN
Accurate testing coal isotherm can play a significant role in the areas of coal seam gas drainage, outburst control, CO2 geo-sequestration, coalbed methane (CBM) and enhanced coalbed methane recovery (ECBM) etc. The effect of particle size on the CO2 and CH4 sorption capacity of bituminous coal from Illawarra, Australia was investigated at 35°C and at pressure up to 4 MPa. A unique indirect gravimetric apparatus was used to measure the gas adsorption and desorption isotherms of coal of different particle sizes ranging from around 150 urn to 16 mm. Langmuir model was used to analysis the experimental results of all gases. Coal particle size was found to have an apparent effect on the coal ash content and helium density results. Coal with larger particle size had higher ash content and higher helium density. The sorption isotherm was found to be highly sensitive with helium density of coal which was determined in the procedure of testing the void volume of sample cell. Hence, coal particle size had a significant influence on the coal sorption characteristics including sorption capacity and desorption hysteresis for CO2 and CH4, especially calculated with dry basis of coal. In this study, the 150-212 um (150 um) coal samples achieved higher sorption capacity and followed by 2.36-3.35 mm (2.4 mm), 8-9.5 mm (8 mm) and 16-19 mm (16 mm) particle size samples. However, the differences between different coal particles were getting smaller when the sorption isotherms are calculated with dry ash free basis. Test with 150 um coal samples were also found to have relatively smaller desorption hysteresis compared with the other larger particle size samples. The different results including adsorption/desorption isotherm, Langmuir parameters and coal hysteresis were all analysed with the CO2 and CH4 gases.
PL
Dokładne zbadanie izoterm sorpcji na węglu odgrywa kluczową rolę w takich dziedzinach jak odgazowanie pokładów węgla, zapobieganie wybuchom, sekwestracja geologiczna CO2, odzysk metanu ze złoża. Wpływ wielkości ziaren na pojemność sorpcyjną bitumicznego węgla z Illawara (Australia) względem CO2 i CH4 zbadano w temperaturze 35°C przy ciśnieniu do 4 MPa. Wykorzystano oryginalną aparaturę do badań grawimetrycznych do zmierzenia izoterm adsorpcji i desorpcji na węglu w którym rozmiar ziaren wahał się od 150 μm do 16 mm. Analizę wyników doświadczalnych dla wszystkich gazów przeprowadzono w oparciu o model Langmuira. Stwierdzono, że rozmiary ziaren węglowych w znacznym stopniu warunkują zawartość popiołu i gęstość helową. Węgiel grubiej uziarniony charakteryzował się wyższą zawartością popiołu i większą gęstością helową. Wykazano, że izoterma sorpcji wykazuje wysoką wrażliwość na zmiany gęstości helowej, co stwierdzono na podstawie badania martwej przestrzeni ampułki w której umieszczono próbkę. Wnioskować stąd można, że rozmiar ziaren węgla w dużym stopniu wpływa na charakterystyki sorpcyjne węgla, w tym także na chłonność sorpcyjną i histerezy desorpcji dla CO2 i CH4, zwłaszcza w badaniach na węglu suchym. W trakcie badań próbki węgla z ziarnami o wymiarach 150-212 μm (150 μm) wykazywały wyższą chłonność sorpcyjną, w dalszej kolejności plasowały się próbki o wymiarach ziaren: 2.36-3.35 mm (2.4 mm), 8-9.5 mm (8 mm) i 16-19 (16 mm). Jednakże różnice pomiędzy różnymi ziarnami węgla stawały się mniej wyraźne gdy izotermy sorpcji obliczane były w odniesieniu do próbki suchej, pozbawionej popiołu. Badania próbek o wymiarach ziaren 150 μm wykazały, że w ich przypadku histereza desorpcji jest stosunkowo mniejsza w porównaniu z próbkami gruboziarnistymi. Wszystkie wyniki: izotermy adsorpcji i desorpcji, parametry Langmuira oraz histerezy węgla badano przy użyciu dwóch gazów: CO2 i CH4.
Rocznik
Strony
807--820
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mines, China University of Mining and Technology, Xuzhou City, Jiangsu 221116, China
  • Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, Xuzhou 221116, China
autor
  • School of Civil, Mining & Environmental Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, NSW 2522, Australia
autor
  • School of Civil, Mining & Environmental Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, NSW 2522, Australia
autor
  • School of Civil, Mining & Environmental Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, NSW 2522, Australia
autor
  • School of Mines, China University of Mining and Technology, Xuzhou City, Jiangsu 221116, China
  • Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, Xuzhou 221116, China
Bibliografia
  • [1] Australian Standard (AS 1038.3-1989). Methods for the analysis and testing of coal and coke.
  • [2] Aziz N., Li W. M., 1999. The effect of sorbed gas on the strength of coal — an experimental study. Geotechnical and Geological Engineering 17, 387-402.
  • [3] Bae J. S., Bhatia S. K., 2006. High-pressure adsorption of methane and carbon dioxide on coal. Energy & Fuels 20, 2599-2607.
  • [4] Beamish B., O’Donnell G., 1992. Microbalance applications to sorption testing of coal, Symposium on Coalbed Methane Research and Development in Australia. Coalseam Gas Research Institute - James Cook University, Townsville, 19-21 November, Vol. 4, p. 31-41.
  • [5] Bielicki R. J., Perkins J. H., Kissell F. N., 1972. Methane diffusion parameters for sized coal particles — A measuring apparatus and some preliminary results. U. S. Bureau of Mines RI 7697,12 p.
  • [6] Black D., 2012. Factors affecting the drainage of gas from coal and methods to improve drainage effectiveness. PhD thesis (University of Wollongong).
  • [7] Busch A., Gensterblum Y., Krooss B. M., 2003. Methane andCO2sorption anddesorption measurements on dry argonne premium coals: Pure components and mixtures. International Journal of Coal Geology 55(2-4), 205-224.
  • [8] Busch A., Gensterblum Y., Krooss B. M., Littke R., 2004. Methane and carbon dioxide adsorption-diffusion experiments on coal: Upscaling and modeling. International Journal of Coal Geology 60(2-4), 151-168.
  • [9] Charrière D., Behra P., 2010. Water sorption on coals. Journal of Colloid and Interface Science 344(2), 460-467.
  • [10] Dudzińska A., Żyła M., Cygankiewicz J., 2013. Influence of the metamorphism grade and porosity of hard coal on sorption and desorption of propane. Archives of Mining Sciences 58(3), 867-879.
  • [11] Dutta P., Bhowmik S., Das S., 2011. Methane and carbon dioxide sorption on a set of coals from india. International Journal of Coal Geology 85(3-4), 289-299.
  • [12] Gamson P., Beamish B., 1992. Coal type, microstructure and gas flow behaviour of Bowen Basin coals. Symposium on Coalbed Methane Research and Development in Australia, Coalseam Gas Research Institute - James Cook University, Townsville, 19-21 November, Vol. 4, p. 43-64.
  • [13] Goodman A. L., Busch A., Duffy G. J., Fitzgerald J. E., Gasem K. A. M., Gensterblum Y., Krooss B. M., Levy J., Özdemir E., Pan Z., Robinson R. L., Schroeder K., Sudibandriyo M., White C. M., 2004. An inter-laboratory comparison of CO2isotherms measured on argonne premium coal samples. Energy & Fuels 18(4), 1175-1182.
  • [14] Harpalani S., Prusty B. K., Dutta P., 2006. Methane/CO2sorption modeling for coalbed methane production and CO2sequestration. Energy & Fuels 20(4), 1591-1599.
  • [15] He J., Shi Y., Ahn S., Kang J. W., Lee C.-H., 2010. Adsorption and desorption of CO2on Korean coal under subcritical to supercritical conditions. The Journal of Physical Chemistry B 114(14), 4854-4861.
  • [16] Lama R. D., Bartosiewicz H., 1982. Determination of gas content of coal seams. Seam Gas Drainage with Particular Reference to the Working Seam. University of Wollongong, NSW, Australia, 36-52.
  • [17] Massarotto P., Golding S. D., Bae J. S., Iyer R., Rudolph V., 2010. Changes in reservoir properties from injection of supercritical CO2into coal seams – a laboratory study. International Journal of Coal Geology 82(3-4), 269-279.
  • [18] Mavor M. J., Close J. C., Pratt T. J., 1992. Review of recent US coalbed natural gas reservoir research. [In:] Proceedings of the Symposium on Coalbed Methane Research and Development in Australia, Coalseam Gas Research Institute - James Cook University, Townsville, November 19-21, Vol. 2, p. 109-152.
  • [19] McCutcheon A. L., Barton W. A., 1998. Contribution of mineral matter to water associated with bituminous coals. Energy & Fuels 13(1), 160-165.
  • [20] McCutcheon A. L., Barton W. A., Wilson M. A., 2002. Characterization of water adsorbed on bituminous coals. Energy & Fuels 17(1), 107-112.
  • [21] Medek J., Weishauptová Z., Kováŕ L., 2006. Combined isotherm of adsorption and absorption on coal and differentiation of both processes. Microporous and Mesoporous Materials 89(1-3), 276-283.
  • [22] Miknis F. P., Netzel D. A., Turner T. F., Wallace J. C., Butcher C. H., 1996. Effect of different drying methods on coal structure and reactivity toward liquefaction. Energy and Fuels 10, 631-640.
  • [23] Ozdemir E., Morsi B. I., Schroeder K., 2004. CO2adsorption capacity of Argonne premium coals. Fuel 83(7-8), 1085-1094.
  • [24] Perkins J. H., Cervik J., 1969. Sorption investigation of methane on coal. United States Department ofthe Interior, Bureau of Mines Methane Control Program, Technical Progress Report - 14, 9p.
  • [25] Ruppel T. C., Grein C. T., Bienstrock D., 1974. Adsorption of methane on dry coal at elevated pressure. Fuel, 53, 152-162.
  • [26] Saghafi A., Roberts D., 2008. Measurement of CO2and CH4reservoir properties of coals from westcliff mine. CSIRO Investigation report ET/IR 1033R.
  • [27] Sereshki F., 2005. Improving coal mine safety by identifying factors that influence the sudden release of gases in outburst prone zones. PhD thesis (University of Wollongong).
  • [28] Seri-Levy A., Avnir D., 1993. Effects of heterogeneous surface geometry on adsorption. Langmuir 9(11), 3067-3076.
  • [29] Tang G. Q., Jessen K., Kovscek A. R., 2005. Laboratory and simulation investigation of enhanced coalbed methane recovery by gas injection. Annual Technical Conference and Exhibition, Dallas 8-12, 14 pages SPE 95947.
  • [30] Hudecek V., Zapletal P., Stonis M., Sojka R., 2013. Results from dealing with rock and gas outburst prevention in the czech republic. Archives of Mining Sciences 58(3), 779-787.
  • [31] Yalçin E., Durucan §., 1991. Methane capacities of zonguldak coals and the factors affecting methane adsorption. Mining Science and Technology 13(2), 215-222.
  • [32] Żyła M., Dudzińska A., Cygankiewicz J., 2013. The influence of disintegration of hard coal varieties of different meta-morphism grade on the amount of sorbed ethane. Archives of Mining Sciences 58(2), 449-463.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd4638dc-e48c-4f17-974a-ebb3aa0d78ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.