PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of the joint start-up mode of the hoisting and slewing mechanisms of a boom

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To increase the productivity of boom cranes, joint movement of mechanisms is performed. The simultaneous start-up of mechanisms significantly increases dynamic loads and intensifies oscillations of structural elements and loads on a flexible suspension reducing the reliability of crane operation and increasing energy losses. Therefore, the optimization problem of the joint start-up of the slewing and load hoisting mechanisms of a boom crane is stated and solved in the article. To optimize the joint start-up of the mechanisms, the boom system is represented by a 5-DOF dynamic model. For such a dynamic model of a boom crane, a mathematical model is developed in the form of a system of nonlinear differential equations of the second order. The optimization problem includes an optimization criterion and constraints on the driving torques and boundary conditions. An approximate modified metaheuristic PSO method was used to solve the nonlinear optimization problem. Based on the calculation, the optimal modes of joint start-up of the mechanisms for load slewing and hoisting of a boom crane were determined, making it possible to minimize dynamic loads and, as a result, reduce oscillations of the system links and energy consumption of the drives.
Rocznik
Strony
351--374
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
  • Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
Bibliografia
  • [1] O. Grigorov, E. Druzhynin, V. Strizhak, M. Strizhak, and G. Anishchenko. Numerical simulation of the dynamics of the system "trolley-load-carrying rope" in a cable crane. Eastern- European Journal of Enterprise Technologies, 3(7(93)):6–12. 2018. doi: 10.15587/1729- 4061.2018.132473.
  • [2] V. Kovalenko, O. Kovalenko, V. Stryzhak, M. Stryzhak, and A. Ruzmetov. Determination of dynamic forces in the metal structure of tower crane based on the multi-mass model. International Journal of Mechatronics and Applied Mechanics, 14:248–256, 2023 doi: 10.17683/ijomam/issue14.29.
  • [3] N. Fidrovska, E. Slepuzhnikov, I. Varchenko, S. Harbuz, S. Shevchenko, M. Chyrkina, and V. Nesterenko. Determining stresses in the metallic structure of an overhead crane when using running wheels of the new design. Eastern-European Journal of Enterprise Technologies, 1(7(109)):22–31, 2021. doi: 10.15587/1729-4061.2021.225097.
  • [4] M.M. Bello, Z. Mohamed, M.Ö. Efe, and H. Ishak. Modelling and dynamic characterization of a double-pendulum overhead crane carrying a distributed-mass payload. Simulation Modelling Practice and Theory, 134:102953, 2024. doi: 10.1016/j.simpat.2024.102953.
  • [5] M. Zhang. Model-free finite-time trajectory tracking control for overhead cranes considering model uncertainties, parameter variations, and external disturbances. Transactions of the Institute of Measurement and Control, 41(12):3516–3525, 2019. doi: 10.1177/0142331219830157.
  • [6] O.S. Podolyak, O.M. Khoroshilov, and K.K. Anenko. Mathematical modeling of the joint movement of mechanisms for lifting, turning and changing the crane’s departure. Engineering, 28:18–25, 2022 (in Ukrainian). doi: 10.32820/2079-1747-2021-28-18-25.
  • [7] M. Ambrosino, M. Berneman, G. Carbone, R. Crépin, A. Dawans, and E. Garone. Modeling and control of 5-DoF boom crane. 2020 Proceedings of the 37th International Symposium on Automation and Robotics in Construction, pages 514–521, Kitakyushu, Japan, 2020. doi: 10.22260/ISARC2020/0071.
  • [8] N. Sun, T. Yang, Y. Fang, Y. Wu, and H. Chen. Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(7):1408–1418, 2019. doi: 10.1109/TSMC.2018.2871627.
  • [9] B. Johns, E. Abdi, and M. Arashpour. Dynamical modelling of boom tower crane rigging systems: model selection for construction. Archives of Civil and Mechanical Engineering, 23(3):162, 2023. doi: 10.1007/s43452-023-00702-x.
  • [10] G. Rigatos, M. Abbaszadeh, and J. Pomares. Nonlinear optimal control for the 4-DOF underactuated robotic tower crane. Autonomous Intelligent Systems, 2(1):21, 2022. doi: 10.1007/s43684-022-00040-4.
  • [11] F. Lui, J. Yang, J.Wang, and C. Liu. Swing characteristics and vibration feature of tower cranes under compound working condition. Shock and Vibration, 2021:8997396, 2021. doi: 10.1155/2021/8997396.
  • [12] A.B. Alhassan, W. Assawinchaichote, H. Zhang and Y. Shi. Hybrid input shaping and fuzzy logic-based position and oscillation control of tower crane system. Expert Systems. 41(2): e13484, 2024. doi: 10.1111/exsy.13484.
  • [13] J, Ye and J. Huang. Control of beam-pendulum dynamics in a tower crane with a slender jib transporting a distributed-mass load. IEEE Transactions on Industrial Electronics, 70(1):888–897, 2023. doi: 10.1109/TIE.2022.3148741.
  • [14] S.M. Fasih, Z. Mohamed, A.R. Hussain, L. Ramli, A.M. Abdullahi, and W. Anjum. Payload swing control of a tower crane using a neural network–based input shaper. Measurement and Control, 53(7-8):1171–1182, 2020. doi: 10.1177/0020294020920895.
  • [15] R. Miranda-Colorado. Robust observer-based anti-swing control of 2D-crane systems with load hoisting-lowering. Nonlinear Dynamics, 104:3581–3596, 2021. doi: 10.1007/s11071-021-06443-x.
  • [16] H. Ouyang, J. Hu, G. Zhang, L. Mei, and X. Deng. Decoupled linear model and s-shaped curve motion trajectory for load sway suppression control in overhead cranes with doublependulum effect. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(10):3678–3689, 2019. doi: 10.1177/0954406218819029.
  • [17] S. Chwastek. Finding the globally optimal correlation of cranes drive mechanisms. Mechanics Based Design of Structures and Machines, 51(6):3230–3241, 2023. doi: 10.1080/15397734.2021.1920978.
  • [18] S. Chwastek. Optimization of crane mechanisms to reduce vibration. Automation in Construction. 119:103335, 2020. doi: 10.1016/j.autcon.2020.103335.
  • [19] V. Loveikin, Y. Romasevych, I. Kadykalo, and A. Liashko. Optimization of the swinging mode of the boom crane upon a complex integral criterion. Journal of Theoretical and Applied Mechanics. Sofia, 49:285–296, 2019. doi: 10.7546/JTAM.49.19.03.07.
  • [20] V. Loveikin, Y. Romasevich, A. Loveikin, and A. Khoroshun. Optimizing the start of the trolley mechanism during steady slewing of tower crane. International Applied Mechanics, 58(5):594–604, 2022. doi: 10.1007/s10778-023-01183-4.
  • [21] Y. Romasevych, V. Loveikin, and Y. Loveikin. Development of a PSO modification with varying cognitive term. 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), pages 1–5, Kharkiv, Ukraine, 2022. doi: 10.1109/KhPIWeek57572.2022.9916413.
  • [22] V. Loveikin, Y. Romasevych, A. Loveikin, M. Korobko, and A. Liashko. Minimization of oscillations of the tower crane slewing mechanism in the steady-state mode of trolley movement. Archive of Mechanical Engineering, 70(3):367–385, 2023. doi: 10.24425/ame.2023.146847.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd443e41-a980-49c0-a97e-22941afbec8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.