PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of the migration path of the maximum pollutants' concentration. Case study of the tailing pond, southwest China

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Following China's economic development, lots of tailing deposits have become potential pollution sources, and their leaching would release the trace elements into the natural environment. The leakage rate model and the solute transport models of groundwater are coupled to investigate the effects of the tailing ponds on groundwater. It indicates that the anti-seepage layer is a necessary and important component of the tailing ponds, which could protect the soil or groundwater to be polluted by wastewater. Under three scenarios (scenario A - ideal conditions, scenario B - the worst conditions, and scenario C), the proportions of maximum concentration to source concentration are 1.2, 94.6, and 19.1%, respectively. Under the worst states of anti-seepage layers, the pollution areas after 730, 1800, 3807 and 7300 days were 130 500, 313 200, 523 800, and 729 000 m2, respectively. Compared with Scenario B, the pollution areas of Scenario C after 1800, 3807, and 7300 days were cut by 52.97, 74.55, and 81.73, respectively. Given important anti-seepage layers, the tracking monitor system is necessary and important to discover whether the groundwater was contaminated in time.
Rocznik
Strony
59--72
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • College of Ho Hai, Chong Qing Jiao Tong University, Chong Qing, 400074, PR China
autor
  • College of Ho Hai, Chong Qing Jiao Tong University, Chong Qing, 400074, PR China
autor
  • College of Ho Hai, Chong Qing Jiao Tong University, Chong Qing, 400074, PR China
  • State Key Laboratory of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu, 610065, P.R. China
autor
  • China Three Gorges Corporation, Yicang, 430010 PR China
autor
  • College of Ho Hai, Chong Qing Jiao Tong University, Chong Qing, 400074, PR China
Bibliografia
  • [1] TAO M., ZHANG X., WANG S.F., Life cycle assessment on lead-zinc ore mining and beneficiation in China, J. Clean Prod., 2019, 237, 117833–117845. DOI: 10.1016/j.jclepro.2019.117833.
  • [2] QIN W.J., HAN D.M., SONG X.F., ENGESGAARD P., Effects of an abandoned Pb-Zn mine on a karstic ground-water reservoir, J. Geochem. Explor., 2019, 200, 221–233. DOI: 10.1016/j.gexplo.2018.09.007.
  • [3] ROMERO A., IGLESIAS N., ROMERO R., LORENZO J., Valorization of a flotation tailing by bioleaching and brine leaching, fostering environmental protection and sustainable development, J. Clean Prod., 2019, 233, 573–581. DOI: http://10.1016/j.jclepro.2019.06.118.
  • [4] MORENO-JIMÉNEZ E., PEÑALOSA J.M., MANZANO R., CARPENA-RUI R.O.Z, GAMARRA R., ESTEBAN E., Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their trans-ference to wild flora, J. Hazard. Mater., 2009, 162, 854–859. DOI: 10.1016/j.jhazmat.2008.05.109.
  • [5] YANG W.L., ZHOU W.Y., WAN W.X., GOU S.Z., ZHANG J., DENG S.H., SHEN F., WANG Y.J., YANG H., LUO L., Assessing soil environmental capacity on different land uses in suburban area of Chengdu, China, Environ. Prot. Eng., 2019, 45, 55–67. DOI: 10.37190/epe190204.
  • [6] HUANG X., DENG H.L., ZHENG C.M., Hydrogeochemical signatures and evolution of groundwater im-pacted by the Bayan Obo tailing pond in northwest China, Sci. Total Environ., 2016, 543, 357–372. DOI: 10.1016/j.scitotenv.2015.10.150.
  • [7] TANG B., XU H.P., SONG F.M., GE H.G., YUE S.Y., Effects of heavy metals on microorganisms anden-zymes in soils of lead-zinc tailing ponds, Environ Res., 2022, 207, 112174. DOI: 10.1016/j.envres.2021.112174.
  • [8] SOUTER L., WATMOUGH S.A., Geochemistry and toxicity of a large slag pile and its drainage complex in Sudbury, Ontario, Sci. Total Environ., 2017, 605, 461–470. DOI: 10.1016/j.scitotenv.2017.06.237.
  • [9] SHEN L.Y., LUO S.H., ZENG X.K., Review on anti-seepage technology development of tailings ponds in China, Pro. Eng., 2011, 26, 1803–1809. DOI: 10.1016/j.proeng.2011.11.2370.
  • [10] JAFARI N.H., STARK T.D., ROWE R.K., Service life of HDPE geomembranes subjected to elevated tem-peratures, J. Hazard. Toxic Rad. Waste., 2014, 18 (1), 16–26. DOI: 10.1061/9780784480472.021.
  • [11] ZHANG H., Design and reality of landfill anti-seepage system considering chemical erosion, Chem. Eng. Trans., 2018, 71, 673–678. DOI: 10.3303/CET1871113.
  • [12] ZHANG J., ZHANG J.M., XING B., LIU G.D., LIANG Y., Study on the effect of municipal solid landfills on groundwater by combining the models of variable leakage rate, leachate concentration, and contam-inant solute transport, J. Environ. Manage., 2021, 292, 112815. DOI: https://doi:10.1016/j.jenvman.2021.112815.
  • [13] GIROUD J.P., BONAPARTE R., Leakage through liners constructed with geomembranes. Part 2. Com-posite lines, Geotext. Geomembr., 1989, 8, 71–111. DOI: https://doi:10.1016/0266-1144(89)90022-8
  • [14] NEEDHAM A.D., SMITH J.W.N., GALLAGHER E.M.G., The service life of polyethylene geomembrane barriers, Eng. Geol., 2006, 85, 82–90. DOI: 10.1016/j.enggeo.2005.09.030.
  • [15] XU Y., LIU J.C., DONG L., Buffering distance between hazardous waste landfill and water supply wells in a shallow aquifer, J. Clean Prod., 2019, 211, 1180–1189. DOI: 10.1016/j.jclepro.2018.11.161.
  • [16] HE Y., LI B.B., ZHANG K.N., LI Z., CHEN Y.G., YE W.M., Experimental and numerical study on heavy metal contaminant migration and retention behavior of engineered barrier in tailings pond, Environ. Pollut., 2019, 252, 1010–1018. DOI: 10.1016/j.envpol.2019.06.072.
  • [17] WANG J., CHEN L., YU Z.B., Modeling rainfall infiltration on hillslopes using flux-concentration rela-tion and time compression approximation, J. Hydrol., 2018, 557, 243–253. DOI: 10.1016/j.jhydrol.2017.12.031.
  • [18] NAR R.N., SUNNY F., MANIKANDAN S.T., Modelling of decay chain transport in groundwater from uranium tailings ponds, Appl. Math. Model., 2010, 34, 2300–2311. DOI: 10.1016/j.apm.2009.10.038.
  • [19] BOULTON N.S., STRELSOVA T.D., Unsteady flow to a pumped well in a fissured water-bearing for-mation, J. Hydrol., 1977, 35, 257–270. DOI: 10.1016/0022-1694(77)90005-1.
  • [20] DIEM S., RENARD P., SCHIRMER M., Assessing the effect of different river water level interpolation schemes on modeled groundwater residence times, J. Hydrol., 2014, 510, 393–402. DOI: 10.1016/j.jhydrol.2013.12.049.
  • [21] TATTI F., PAPINI M.P., SAPPA G., Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: A laboratory investigation by box model and image analysis, Sci. Total En-viron., 2018, 622, 164–171. DOI: 10.1016/j.scitotenv.2017.11.347.
  • [22] LI J., YANG Y., HUAN H., Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment, Sci. Total Environ., 2016, 551, 143–154. DOI: 10.1016/j.scitotenv.2015.12.152.
  • [23] SI W.T., HE X.Y., LI A., Application of an integrated biomarker response index to assess ground water con-tamination in the vicinity of a rare earth mine tailings site, Environ. Sci. Pollut. Res., 2016, 23, 17345 –17356. DOI: 10.1007/s11356-016-6728-8.
  • [24] HE X.Y., ZHENG C.L., SUI X., JING Q.G., WU X., WANG J.Y., SI W.T., ZHANG X.F., Biological damage to Sprague-Dawley rats by excessive anions contaminated groundwater from rare earth metals tail-ings pond seepage, J. Clean. Prod., 2018, 185, 523-532. DOI: 10.1016/j.jclepro.2018.03.074.
  • [25] SHARMA R.S., AL-BUSAIDI T.S., Groundwater pollution due to a tailings dam, Eng. Geol., 2001, 60, 235–244. DOI: 10.1016/S0013-7952(00)00104-6.
  • [26] YANG W.L., ZHANG J. YUAN Y., LIU G.D., LI Y., HUANG X., DENG S.H., Groundwater solute transport simulation based on the finite difference method. A case study with landfill, Environ. Eng., 2017, 35, 30–34. DOI: 10.13205/j.hjgc.201712007.
  • [27] HARTE P.T., KONIKOW L.F., HORNBERGER G.Z., Simulation of solute transport across low-permeabil-ity barrier walls, J. Contam. Hydrol., 2006, 85, 247–270. DOI: 10.1016/j.jconhyd.2006.02.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd40f780-c3dc-4de3-a539-9daaa63877b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.