PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carboxymethyl Cellulose Nanoadsorbent for Remediation of Polluted Water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of nanoadsorbents for remediation of polluted water in order to obtain clean and healthy water quality has been carried out, namely the incorporation of chitosan, magnetic, and activated carbon materials. The activated carbon used is the result of the synthesis of banana peel waste nanocrystals, while the magnetic is Fe3O4. The method used in this study is an experimental method with coprecipitation through several stages, namely (1) magnetic synthesis of Fe3O4 by thecoprecipitation method, (2) preparation of chitosan solution, (3) synthesis of activated carbon nanocrystals from banana peel waste by the milling process, (4) merger of the three materials, and (5) characterization with SEM/EDX, XRD, FTIR, BET, PSA, TGA, and AAS to test the performance of the material against polluted water. The study found that 210 minutes was the optimal time for the heavy metal ions Fe, Mn, Zn, and Pb to adsorption.The best sample was sample S4 with a ratio of 1:2:2 with adsorption for Zn 92.43%, Fe 95.44%, Mn 89.54%, and Pb 84.38%. For the heavy metal ions: Mn 5624 mg/g, Fe 5849.4 mg/g, Zn 4894.22 mg/g, and Pb 468.2 mg/g, the Langmuir model was used. The adsorption kinetics showed that the reaction order for Pb, Mn, Zn, and Fe ions varied with pseudo-first order and pseudo-second order. Carboxymethyl cellulose nanoadsorbents are effective in remediating the water contaminated with heavy metals, such as Pb, Mn, Zn, and Fe, meeting the environmental health quality standards for water media for sanitation hygiene purposes.
Rocznik
Strony
336--348
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Physics, FMIPA, Universitas Sumatera Utara, Jl. Bioteknologi I Kampus USU Medan 20155, Indonesia
  • Universitas Muslim Nusantara Al Washliyah, Jl. Garu II A No. 93, Medan Amplas, Kota Medan, Indonesia
autor
  • Department of Physics, FMIPA, Universitas Sumatera Utara, Jl. Bioteknologi I Kampus USU Medan 20155, Indonesia
  • Department of Physics, FMIPA, Universitas Sumatera Utara, Jl. Bioteknologi I Kampus USU Medan 20155, Indonesia
  • Department of Physics, FMIPA, Universitas Sumatera Utara, Jl. Bioteknologi I Kampus USU Medan 20155, Indonesia
  • Department of Physics, FMIPA, Universitas Sumatera Utara, Jl. Bioteknologi I Kampus USU Medan 20155, Indonesia
autor
  • Universitas Muslim Nusantara Al Washliyah, Jl. Garu II A No. 93, Medan Amplas, Kota Medan, Indonesia
  • Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
  • Physics Department, Faculty of Mathematics and Natural Science Universitas Negeri Semarang, Sekaran-Gunungpati 50229, Semarang, Indonesia
Bibliografia
  • 1. Abbasi, M. 2017. Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal Mahmoud. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.01.046
  • 2. Adusei, J.K., Agorku, E.S., Voegborlo, R.B., Ampong, F.K., Danu, B.Y., Amarh, F.A. 2022. Removal of Methyl red in aqueous systems using synthesized NaAlg-g-CHIT/nZVI adsorbent. Scientific African, 17, e01273. https://doi.org/10.1016/j.sciaf.2022.e01273
  • 3. Wojciechowska, A., Lendzion, Z.B. 2020. Synthesis and Characterization of Magnetic Nanomaterials with Adsorptive Properties of. Molecules, (III).
  • 4. Alinezhad, H., Zabihi, M., Kahfroushan, D. 2020. Design and fabrication the novel polymeric magnetic boehmite nanocomposite (boehmite@ Fe3O4@PLA@SiO2) for the remarkable competitive adsorption of methylene blue and mercury ions. Journal of Physics and Chemistry of Solids, 144(December 2019), 109515. https://doi.org/10.1016/j.jpcs.2020.109515
  • 5. Amin, M.T., Alazba, A.A., Manzoor, U. 2014. A Review of Removal of Pollutants from Water / Wastewater Using Different Types of Nanomaterials. Advanced in Materials Science and Engineering, 2014.
  • 6. Annadurai, G., Juang, R.S., Lee, D.J. 2018. Adsorption of Heavy Metals From Water Using Banana and Orange Peels (PDF Download Available). Water Science and Technology, (July), 185–190.
  • 7. Blue, C.F.O.P., Long, X., Chen, H., Huang, T., Zhang, Y., Lu, Y., Chen, R. (2021). Removal of Cd (II ) from Micro-Polluted Water by Magnetic. Molecules, (II).
  • 8. Chen, A., Shang, C., Shao, J., Lin, Y., Luo, S., Zhang, J., Huang, H. 2017. Carbon disulfide-modified magnetic ion-imprinted chitosan-Fe ( III ): A novel adsorbent for simultaneous removal of tetracycline and cadmium. Carbohydrate Polymers, 155, 19–27. https://doi.org/10.1016/j.carbpol.2016.08.038
  • 9. Chibowski, E. 2018. Magnetic Water treatment-a review of the latest approaches. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.03.160
  • 10. Danish, M., Ahmad, T., Majeed, S., Ahmad, M., Ziyang, L., Pin, Z., Shakeel Iqubal, S.M. 2018. Use of banana trunk waste as activated carbon in scavenging methylene blue dye: Kinetic, thermodynamic, and isotherm studies. Bioresource Technology Reports, 3, 127–137. https://doi.org/10.1016/j.biteb.2018.07.007
  • 11. Dave, P.N., Chopda, L.V. 2014. Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals. Journal of Nanotechnology, 2014.
  • 12. Drbohlavova, J., Hrdy, R., Adam, V., Kizek, R., Schneeweiss, O., Hubalek, J. 2010. Preparation and properties of various magnetic nanoparticles. Sensors, 9(4), 2352–2362. https://doi.org/10.3390/s90402352
  • 13. Feng, X., Sun, S., Cheng, G., Shi, L., Yang, X., Zhang, Y. 2021. Removal of Uranyl Ion from Wastewater by Magnetic Adsorption Material of Polyaniline Combined with CuFe 2 O 4. Adsorption Science & Technology, 2021.
  • 14. Gameli, B.H.R., Duwiejuah, A.B., Bawa, A.A. 2022. Adsorption of toxic metals from greywater using low-cost spent green tea as a novel adsorbent. Scientific African, 17, e01296. https://doi.org/10.1016/j.sciaf.2022.e01296
  • 15. Gutierrez, A.M., Dziubla, T.D., Hilt, J.Z. 2017. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment, 32, 111–117. https://doi.org/10.1515/reveh-2016-0063
  • 16. Gutierrez, A.M., Hilt, J.Z. 2017. Recent Advances on Iron Oxide Magnetic Nanoparticles as Sorbents of Organic Pollutants in Water and Wastewater Treatment Recent Advances on Iron Oxide Magnetic Nanoparticles as Sorbents of Organic. Reviews on Envirinmental Health.
  • 17. Hu, B., Ai, Y., Jin, J., Hayat, T., Alsaedi, A., Zhuang, L., Wang, X. 2020. Efficient elimination of organic and inorganic pollutants by biochar and biocharbased materials. Biochar, 2(1), 47–64. https://doi.org/10.1007/s42773-020-00044-4
  • 18. Khairiah, K., Frida, E., Sebayang, K., Sinuhaji, P., Humaidi, S. 2021. Data on Characterization, Model, and Adsorption Rate of Banana Peel Activated Carbon (Musa Acuminata) for Adsorbents of Various Heavy Metals (Mn, Pb, Zn, Fe). Data in Brief, 39, 107611. https://doi.org/10.1016/j.dib.2021.107611
  • 19. Khairiah, K., Frida, E., Sebayang, K., Sinuhaji, P., Humaidi, S., Fudholi, A. 2021. The Development of a Novel FM Nanoadsorbent for Heavy Metal Remediation in Polluted Water. South African Journal of Chemical Engineering, 39(July 2021), 32–41. https://doi.org/10.1016/j.sajce.2021.11.006
  • 20. Koesnarpadi, S., Juari, S., Siswanta, D., Rusdiarso, B. 2015. Synthesis and characterizatation of magnetite nanoparticle coated humic acid ( Fe3O4 / HA). Procedia Environmental Sciences, 30, 103–108. https://doi.org/10.1016/j.proenv.2015.10.018
  • 21. Lesaoana, M., Mlaba, R.P.V, Mtunzi, F.M., Klink, M.J., Ejidike, P., Pakade, V.E. 2019. Influence of inorganic acid modification on Cr ( VI ) adsorption performance and the physicochemical properties of activated carbon. South African Journal of Chemical Engineering, 28(January), 8–18. https://doi.org/10.1016/j.sajce.2019.01.001
  • 22. Lin, L., Jiang, W. (n.d.). A critical review of the application of electromagnetic fi elds for scaling control in water systems : mechanisms, characterization, and operation. Npj Clean Water. https://doi.org/10.1038/s41545-020-0071-9
  • 23. Lin, S., Jin, J., Sun, S., Yu, J. 2020. Removal of arsenic contaminants using a novel porous nanoadsorbent with superior magnetic recovery. Chemical Engineering Science: X, 8, 100069. https://doi.org/10.1016/j.cesx.2020.100069
  • 24. Mahmoudi, F., Amini, M.M., Sillanpää, M. 2020. Synthesis of MIL-100 ( Fe )/ SBA-15 composite as a novel and ultrafast adsorbent for removal of methylene blue dye from aqueous solution. Inorganic Chemistry Communications, 100, 108032. https://doi.org/10.1016/j.inoche.2020.108032
  • 25. Manyangadze, M., Chikuruwo, N.H.M., Narsaiah, T.B., Chakra, C.S., Radhakumari, M., Danha, G. 2020. Enhancing adsorption capacity of nano-adsorbents via surface modi fi cation : A review. South African Journal of Chemical Engineering, 31(September 2019), 25–32. https://doi.org/10.1016/j.sajce.2019.11.003
  • 26. Matome, S.M., Makhado, E., Katata-Seru, L.M., Maponya, T.C., Modibane, K.D., Hato, M.J., Bahadur, I. 2020. Green synthesis of polypyrrole / nanoscale zero valent iron nanocomposite and use as an adsorbent for hexavalent chromium from aqueous solution. South African Journal of Chemical Engineering, 34(November 2019), 1–10. https://doi.org/10.1016/j.sajce.2020.05.004
  • 27. Munagapati, V.S., Yarramuthi, V., Kim, Y., Lee, K.M., Kim, D.S. 2018. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicology and Environmental Safety, 148(August 2017), 601–607. https://doi.org/10.1016/j.ecoenv.2017.10.075
  • 28. Negroiu, M., Țurcanu, A.A., Matei, E., Râpă, M., Covaliu, C.I., Predescu, A.M., Predescu, C. 2021. Novel Adsorbent Based on Banana Peel Waste for Removal of Heavy Metal Ions from Synthetic Solutions. Materials, 14(14), 3946. https://doi.org/10.3390/ma14143946
  • 29. Nithya, R., Sudha, P.N. 2016. Removal of heavy metals from tannery effluent using chitosan-g-poly( butyl acrylate )/ bentonite nanocomposite as an adsorbent. Textiles and Clothing Sustainability, 1–8. https://doi.org/10.1186/s40689-016-0018-1
  • 30. Olaoye, R.A., Afolayan, O.D., Adeyemi, K.A., Ajisope, L.O., Adekunle, O.S. 2020. Adsorption of selected metals from cassava processing wastewater using cow-bone ash. Scientific African, 10, e00653. https://doi.org/10.1016/j.sciaf.2020.e00653
  • 31. Petcharoen, K., Sirivat, A. 2012. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 177(5), 421–427. https://doi.org/10.1016/j.mseb.2012.01.003
  • 32. Safari, E., Rahemi, N., Kahforoushan, D., Allahyari, S. 2019. Copper adsorptive removal from aqueous solution by orange peel residue carbon nanoparticles synthesized by combustion method using response surface methodology. Journal of Environmental Chemical Engineering, 7(1), 102847. https://doi.org/10.1016/j.jece.2018.102847
  • 33. Saleh Jafer, A., Hassan, A.A. 2019. Removal of oil content in oilfield produced water using chemically modified kiwi peels as efficient low-cost adsorbent. Journal of Physics: Conference Series, 1294(7). https://doi.org/10.1088/1742-6596/1294/7/072013
  • 34. Shen, Y.F., Tang, J., Nie, Z.H., Wang, Y.D., Ren, Y., Zuo, L. 2009. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification, 68, 312–319. https://doi.org/10.1016/j.seppur.2009.05.020
  • 35. Shukla, S.K., Al Mushaiqri, N.R.S., Al Subhi, H.M., Yoo, K., Al Sadeq, H. 2020. Low-cost activated carbon production from organic waste and its utilization for wastewater treatment. Applied Water Science, 10(2), 1–9. https://doi.org/10.1007/s13201-020-1145-z
  • 36. Singh, S., Parveen, N., Gupta, H. 2018. Adsorptive decontamination of rhodamine-B from water using banana peel powder: A biosorbent. Environmental Technology and Innovation, 12, 189–195. https://doi.org/10.1016/j.eti.2018.09.001
  • 37. Siregar, J., Septiani, N.L.W., Abrori, S.A., Sebayang, K., Irzaman, Fahmi, M.Z., Yuliarto, B. 2021. Review—A Pollutant Gas Sensor Based On Fe3O4 Nanostructures: A Review. Journal of the Electrochemical Society, 168(2), 027510. https://doi.org/10.1149/1945-7111/abd928
  • 38. Tejada-Tovar, C., Gonzalez-Delgado, A., Villabona-Ortiz, A. 2018. Comparison of banana peel biosorbents for the removal of Cr (VI) from water. Contemporary Engineering Sciences, 11(21), 1033–1041. https://doi.org/10.12988/ces.2018.8390
  • 39. Yu, S., Pang, H., Huang, S., Tang, H., Wang, S., Qiu, M., Wang, X. 2021. Recent advances in metal-organic framework membranes for water treatment: A review. Science of the Total Environment, 800, 149662. https://doi.org/10.1016/j.scitotenv.2021.149662
  • 40. Yuvaraja, G., Venkata, M. 2016. Removal of Pb ( II ) ions by using magnetic chitosan-4- ((pyridin-2-ylimino) methyl) benzaldehyde Schiff’s base. International Journal of Biological Macromolecules, 93, 408–417. https://doi.org/10.1016/j.ijbiomac.2016.08.084
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd3b6c6e-de9f-4e0a-8236-c6ef3d786884
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.